Skip to main content

Custom Jupyter magics for interacting with LLMs.

Project description

JupyterChatbook

Python package of a Jupyter extension that facilitates the interaction with Large Language Models (LLMs).

Remark: The chatbook LLM cells use the packages "openai", [OAIp2], and "google-generativeai", [GAIp1].

Remark: The API keys for the LLM cells are taken from the Operating System (OS) environmental variables OPENAI_API_KEY and PALM_API_KEY.

Remark: The results of the LLM cells are automatically copied to the clipboard using the package "pyperclip", [ASp1].


Installation

Install from GitHub

pip install -e git+https://github.com/antononcube/Python-JupyterChatbook.git#egg=Python-JupyterChatbook

From PyPi

pip install JupyterChatbook

Demonstration notebooks (chatbooks)

Notebook Description
Chatbooks-cells-demo.ipynb How to do multi-cell (notebook-wide) chats?
Chatbook-LLM-cells.ipynb How to "directly message" LLMs services?
DALL-E-cells-demo.ipynb How to generate images with DALL-E?
Echoed-chats.ipynb How to see the LLM interaction execution steps?

Notebook-wide chats

Chatbooks have the ability to maintain LLM conversations over multiple notebook cells. A chatbook can have more than one LLM conversations. "Under the hood" each chatbook maintains a database of chat objects. Chat cells are used to give messages to those chat objects.

For example, here is a chat cell with which a new "Email writer" chat object is made, and that new chat object has the identifier "em12":

%%chat --chat_id em12, --prompt "Given a topic, write emails in a concise, professional manner"
Write a vacation email.

Here is a chat cell in which another message is given to the chat object with identifier "em12":

%%chat --chat_id em12
Rewrite with manager's name being Jane Doe, and start- and end dates being 8/20 and 9/5.

In this chat cell a new chat object is created:

%%chat -i snowman, --prompt "Pretend you are a friendly snowman. Stay in character for every response you give me. Keep your responses short."
Hi!

And here is a chat cell that sends another message to the "snowman" chat object:

%%chat -i snowman
Who build you? Where?

Remark: Specifying a chat object identifier is not required. I.e. only the magic spec %%chat can be used. The "default" chat object ID identifier is "NONE".

For more examples see the notebook "Chatbook-cells-demo.ipynb".

Here is a flowchart that summarizes the way chatbooks create and utilize LLM chat objects:

flowchart LR
    OpenAI{{OpenAI}}
    PaLM{{PaLM}}
    LLMFunc[[LLMFunctions]]
    LLMProm[[LLMPrompts]]
    CODB[(Chat objects)]
    PDB[(Prompts)]
    CCell[/Chat cell/]
    CRCell[/Chat result cell/]
    CIDQ{Chat ID<br/>specified?}
    CIDEQ{Chat ID<br/>exists in DB?}
    RECO[Retrieve existing<br/>chat object]
    COEval[Message<br/>evaluation]
    PromParse[Prompt<br/>DSL spec parsing]
    KPFQ{Known<br/>prompts<br/>found?}
    PromExp[Prompt<br/>expansion]
    CNCO[Create new<br/>chat object]
    CIDNone["Assume chat ID<br/>is 'NONE'"] 
    subgraph Chatbook frontend    
        CCell
        CRCell
    end
    subgraph Chatbook backend
        CIDQ
        CIDEQ
        CIDNone
        RECO
        CNCO
        CODB
    end
    subgraph Prompt processing
        PDB
        LLMProm
        PromParse
        KPFQ
        PromExp 
    end
    subgraph LLM interaction
      COEval
      LLMFunc
      PaLM
      OpenAI
    end
    CCell --> CIDQ
    CIDQ --> |yes| CIDEQ
    CIDEQ --> |yes| RECO
    RECO --> PromParse
    COEval --> CRCell
    CIDEQ -.- CODB
    CIDEQ --> |no| CNCO
    LLMFunc -.- CNCO -.- CODB
    CNCO --> PromParse --> KPFQ
    KPFQ --> |yes| PromExp
    KPFQ --> |no| COEval
    PromParse -.- LLMProm 
    PromExp -.- LLMProm
    PromExp --> COEval 
    LLMProm -.- PDB
    CIDQ --> |no| CIDNone
    CIDNone --> CIDEQ
    COEval -.- LLMFunc
    LLMFunc <-.-> OpenAI
    LLMFunc <-.-> PaLM

Chat meta cells

TBD...


DALL-E access

See the notebook "DALL-E-cells-demo.ipynb"

Here is a screenshot:


Implementation details

The design of this package -- and corresponding envisioned workflows with it -- follow those of the Raku package "Jupyter::Chatbook", [AAp3].


TODO

  • TODO Implementation
    • DONE PalM chat cell
    • TODO Using "pyperclip"
      • DONE Basic
        • %%chatgpt
        • %%dalle
        • %%palm
        • %%chat
      • TODO Switching on/off copying to the clipboard
        • DONE Per cell
          • With the argument --copy_to_clipboard.
        • TODO Global
          • Can be done via the chat meta cell, but maybe a more elegant, bureaucratic solution exists.
    • DONE Formatted output: asis, html, markdown
      • General lexer code?
        • Includes LaTeX.
      • %%chatgpt
      • %%palm
      • %%chat
      • %%chat_meta?
    • DONE DALL-E image variations cell
      • Combined image variations and edits with %%dalle.
    • TODO Mermaid-JS cell
    • TODO ProdGDT cell
    • MAYBE DeepL cell
    • TODO Lower level access to chat objects.
      • Like:
        • Getting the 3rd message
        • Removing messages after 2 second one
        • etc.
    • TODO Using LLM commands to manipulate chat objects
      • Like:
        • "Remove the messages after the second for chat profSynapse3."
        • "Show the third messages of each chat object."
  • TODO Documentation
    • DONE Multi-cell LLM chats movie (teaser)
      • See [AAv2].
    • TODO LLM service cells movie (short)
    • TODO Multi-cell LLM chats movie (comprehensive)
    • TODO Code generation

References

Packages

[AAp1] Anton Antonov, LLMFunctionObjects Python package, (2023), Python-packages at GitHub/antononcube.

[AAp2] Anton Antonov, LLMPrompts Python package, (2023), Python-packages at GitHub/antononcube.

[AAp3] Anton Antonov, Jupyter::Chatbook Raku package, (2023), GitHub/antononcube.

[ASp1] Al Sweigart, pyperclip (Python package), (2013-2021), PyPI.org/AlSweigart.

[GAIp1] Google AI, google-generativeai (Google Generative AI Python Client), (2023), PyPI.org/google-ai.

[OAIp1] OpenAI, openai (OpenAI Python Library), (2020-2023), PyPI.org.

Videos

[AAv1] Anton Antonov, "Jupyter Chatbook multi cell LLM chats teaser (Raku)", (2023), YouTube/@AAA4Prediction.

[AAv2] Anton Antonov, "Jupyter Chatbook multi cell LLM chats teaser (Python)", (2023), YouTube/@AAA4Prediction.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

JupyterChatbook-0.0.14.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

JupyterChatbook-0.0.14-py3-none-any.whl (9.9 kB view details)

Uploaded Python 3

File details

Details for the file JupyterChatbook-0.0.14.tar.gz.

File metadata

  • Download URL: JupyterChatbook-0.0.14.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for JupyterChatbook-0.0.14.tar.gz
Algorithm Hash digest
SHA256 cd5dfc95d2905ca2a2515da4c97eeafe6515f2212e31352c8d46f5a95eb81d77
MD5 c2c3455e06a3be25a390097c735fde8a
BLAKE2b-256 79a2638a53d7e2f9949a0a5501218351ef51444d0ad779a472deb92961950881

See more details on using hashes here.

File details

Details for the file JupyterChatbook-0.0.14-py3-none-any.whl.

File metadata

File hashes

Hashes for JupyterChatbook-0.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 7f9e955c14ad736fee6f1d150abf945454ce38afde18e176b126540164ee27f8
MD5 00fc2d14a4e127c224b4369ee42bf0c8
BLAKE2b-256 4dfb6adc7ffe903eb577bf4bcf1381f3cc1a527856a1952f81ee17579040fbac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page