Skip to main content

Custom Jupyter magics for interacting with LLMs.

Project description

JupyterChatbook

PyPI PyPI - Downloads

"JupyterChatbook" is a Python package of a Jupyter extension that facilitates the interaction with Large Language Models (LLMs).

The Chatbook extension provides the cell magics:

  • %%chatgpt (and the synonym %%openai)
  • %%palm
  • %%dalle
  • %%chat
  • %%chat_meta

The first three are for "shallow" access of the corresponding LLM services. The 4th one is the most important -- allows contextual, multi-cell interactions with LLMs. The last one is for managing the chat objects created in a notebook session.

Remark: The chatbook LLM cells use the packages "openai", [OAIp2], and "google-generativeai", [GAIp1].

Remark: The results of the LLM cells are automatically copied to the clipboard using the package "pyperclip", [ASp1].

Remark: The API keys for the LLM cells can be specified in the magic lines. If not specified then the API keys are taken f rom the Operating System (OS) environmental variables OPENAI_API_KEY and PALM_API_KEY. (See below the setup section for LLM services access.)

Here is a couple of movies [AAv2, AAv3] that provide quick introductions to the features:


Installation

Install from GitHub

pip install -e git+https://github.com/antononcube/Python-JupyterChatbook.git#egg=Python-JupyterChatbook

From PyPi

pip install JupyterChatbook

Setup LLM services access

The API keys for the LLM cells can be specified in the magic lines. If not specified then the API keys are taken f rom the Operating System (OS) environmental variablesOPENAI_API_KEY and PALM_API_KEY. (For example, set in the "~/.zshrc" file in macOS.)

One way to set those environmental variables in a notebook session is to use the %env line magic. For example:

%env OPENAI_API_KEY = <YOUR API KEY>

Another way is to use Python code. For example:

import os
os.environ['PALM_API_KEY'] = '<YOUR PALM API KEY>'
os.environ['OPEN_API_KEY'] = '<YOUR OPEN API KEY>'

Demonstration notebooks (chatbooks)

Notebook Description
Chatbooks-cells-demo.ipynb How to do multi-cell (notebook-wide) chats?
Chatbook-LLM-cells.ipynb How to "directly message" LLMs services?
DALL-E-cells-demo.ipynb How to generate images with DALL-E?
Echoed-chats.ipynb How to see the LLM interaction execution steps?

Notebook-wide chats

Chatbooks have the ability to maintain LLM conversations over multiple notebook cells. A chatbook can have more than one LLM conversations. "Under the hood" each chatbook maintains a database of chat objects. Chat cells are used to give messages to those chat objects.

For example, here is a chat cell with which a new "Email writer" chat object is made, and that new chat object has the identifier "em12":

%%chat --chat_id em12, --prompt "Given a topic, write emails in a concise, professional manner"
Write a vacation email.

Here is a chat cell in which another message is given to the chat object with identifier "em12":

%%chat --chat_id em12
Rewrite with manager's name being Jane Doe, and start- and end dates being 8/20 and 9/5.

In this chat cell a new chat object is created:

%%chat -i snowman, --prompt "Pretend you are a friendly snowman. Stay in character for every response you give me. Keep your responses short."
Hi!

And here is a chat cell that sends another message to the "snowman" chat object:

%%chat -i snowman
Who build you? Where?

Remark: Specifying a chat object identifier is not required. I.e. only the magic spec %%chat can be used. The "default" chat object ID identifier is "NONE".

For more examples see the notebook "Chatbook-cells-demo.ipynb".

Here is a flowchart that summarizes the way chatbooks create and utilize LLM chat objects:

flowchart LR
    OpenAI{{OpenAI}}
    PaLM{{PaLM}}
    LLMFunc[[LLMFunctions]]
    LLMProm[[LLMPrompts]]
    CODB[(Chat objects)]
    PDB[(Prompts)]
    CCell[/Chat cell/]
    CRCell[/Chat result cell/]
    CIDQ{Chat ID<br/>specified?}
    CIDEQ{Chat ID<br/>exists in DB?}
    RECO[Retrieve existing<br/>chat object]
    COEval[Message<br/>evaluation]
    PromParse[Prompt<br/>DSL spec parsing]
    KPFQ{Known<br/>prompts<br/>found?}
    PromExp[Prompt<br/>expansion]
    CNCO[Create new<br/>chat object]
    CIDNone["Assume chat ID<br/>is 'NONE'"] 
    subgraph Chatbook frontend    
        CCell
        CRCell
    end
    subgraph Chatbook backend
        CIDQ
        CIDEQ
        CIDNone
        RECO
        CNCO
        CODB
    end
    subgraph Prompt processing
        PDB
        LLMProm
        PromParse
        KPFQ
        PromExp 
    end
    subgraph LLM interaction
      COEval
      LLMFunc
      PaLM
      OpenAI
    end
    CCell --> CIDQ
    CIDQ --> |yes| CIDEQ
    CIDEQ --> |yes| RECO
    RECO --> PromParse
    COEval --> CRCell
    CIDEQ -.- CODB
    CIDEQ --> |no| CNCO
    LLMFunc -.- CNCO -.- CODB
    CNCO --> PromParse --> KPFQ
    KPFQ --> |yes| PromExp
    KPFQ --> |no| COEval
    PromParse -.- LLMProm 
    PromExp -.- LLMProm
    PromExp --> COEval 
    LLMProm -.- PDB
    CIDQ --> |no| CIDNone
    CIDNone --> CIDEQ
    COEval -.- LLMFunc
    LLMFunc <-.-> OpenAI
    LLMFunc <-.-> PaLM

Chat meta cells

Each chatbook session has a dictionary of chat objects. Chatbooks can have chat meta cells that allow the access of the chat object "database" as whole, or its individual objects.

Here is an example of a chat meta cell (that applies the method print to the chat object with ID "snowman"):

%%chat_meta -i snowman 
print

Here is an example of chat meta cell that creates a new chat chat object with the LLM prompt specified in the cell ("Guess the word"):

%%chat_meta -i WordGuesser --prompt
We're playing a game. I'm thinking of a word, and I need to get you to guess that word. 
But I can't say the word itself. 
I'll give you clues, and you'll respond with a guess. 
Your guess should be a single word only.

Here is another chat object creation cell using a prompt from the package "LLMPrompts", [AAp2]:

%%chat_meta -i yoda1 --prompt
@Yoda

Here is a table with examples of magic specs for chat meta cells and their interpretation:

cell magic line cell content interpretation
chat_meta -i ew12 print Give the "print out" of the chat object with ID "ew12"
chat_meta --chat_id ew12 messages Give the messages of the chat object with ID "ew12"
chat_meta -i sn22 --prompt You pretend to be a melting snowman. Create a chat object with ID "sn22" with the prompt in the cell
chat_meta --all keys Show the keys of the session chat objects DB
chat_meta --all print Print the repr forms of the session chat objects

Here is a flowchart that summarizes the chat meta cell processing:

flowchart LR
    LLMFunc[[LLMFunctionObjects]]
    CODB[(Chat objects)]
    CCell[/Chat meta cell/]
    CRCell[/Chat meta cell result/]
    CIDQ{Chat ID<br/>specified?}
    KCOMQ{Known<br/>chat object<br/>method?}
    AKWQ{Option '--all'<br/>specified?} 
    KCODBMQ{Known<br/>chat objects<br/>DB method?}
    CIDEQ{Chat ID<br/>exists in DB?}
    RECO[Retrieve existing<br/>chat object]
    COEval[Chat object<br/>method<br/>invocation]
    CODBEval[Chat objects DB<br/>method<br/>invocation]
    CNCO[Create new<br/>chat object]
    CIDNone["Assume chat ID<br/>is 'NONE'"] 
    NoCOM[/Cannot find<br/>chat object<br/>message/]
    CntCmd[/Cannot interpret<br/>command<br/>message/]
    subgraph Chatbook
        CCell
        NoCOM
        CntCmd
        CRCell
    end
    CCell --> CIDQ
    CIDQ --> |yes| CIDEQ  
    CIDEQ --> |yes| RECO
    RECO --> KCOMQ
    KCOMQ --> |yes| COEval --> CRCell
    KCOMQ --> |no| CntCmd
    CIDEQ -.- CODB
    CIDEQ --> |no| NoCOM
    LLMFunc -.- CNCO -.- CODB
    CNCO --> COEval
    CIDQ --> |no| AKWQ
    AKWQ --> |yes| KCODBMQ
    KCODBMQ --> |yes| CODBEval
    KCODBMQ --> |no| CntCmd
    CODBEval -.- CODB
    CODBEval --> CRCell
    AKWQ --> |no| CIDNone
    CIDNone --> CIDEQ
    COEval -.- LLMFunc

DALL-E access

See the notebook "DALL-E-cells-demo.ipynb"

Here is a screenshot:


Implementation details

The design of this package -- and corresponding envisioned workflows with it -- follow those of the Raku package "Jupyter::Chatbook", [AAp3].


TODO

  • TODO Implementation
    • DONE PalM chat cell
    • TODO Using "pyperclip"
      • DONE Basic
        • %%chatgpt
        • %%dalle
        • %%palm
        • %%chat
      • TODO Switching on/off copying to the clipboard
        • DONE Per cell
          • Controlled with the argument --no_clipboard.
        • TODO Global
          • Can be done via the chat meta cell, but maybe a more elegant, bureaucratic solution exists.
    • DONE Formatted output: asis, html, markdown
      • General lexer code?
        • Includes LaTeX.
      • %%chatgpt
      • %%palm
      • %%chat
      • %%chat_meta?
    • DONE DALL-E image variations cell
      • Combined image variations and edits with %%dalle.
    • TODO Mermaid-JS cell
    • TODO ProdGDT cell
    • MAYBE DeepL cell
    • TODO Lower level access to chat objects.
      • Like:
        • Getting the 3rd message
        • Removing messages after 2 second one
        • etc.
    • TODO Using LLM commands to manipulate chat objects
      • Like:
        • "Remove the messages after the second for chat profSynapse3."
        • "Show the third messages of each chat object."
  • TODO Documentation
    • DONE Multi-cell LLM chats movie (teaser)
      • See [AAv2].
    • TODO LLM service cells movie (short)
    • TODO Multi-cell LLM chats movie (comprehensive)
    • TODO Code generation

References

Packages

[AAp1] Anton Antonov, LLMFunctionObjects Python package, (2023), Python-packages at GitHub/antononcube.

[AAp2] Anton Antonov, LLMPrompts Python package, (2023), Python-packages at GitHub/antononcube.

[AAp3] Anton Antonov, Jupyter::Chatbook Raku package, (2023), GitHub/antononcube.

[ASp1] Al Sweigart, pyperclip (Python package), (2013-2021), PyPI.org/AlSweigart.

[GAIp1] Google AI, google-generativeai (Google Generative AI Python Client), (2023), PyPI.org/google-ai.

[OAIp1] OpenAI, openai (OpenAI Python Library), (2020-2023), PyPI.org.

Videos

[AAv1] Anton Antonov, "Jupyter Chatbook multi cell LLM chats teaser (Raku)", (2023), YouTube/@AAA4Prediction.

[AAv2] Anton Antonov, "Jupyter Chatbook LLM cells demo (Python)", (2023), YouTube/@AAA4Prediction.

[AAv3] Anton Antonov, "Jupyter Chatbook multi cell LLM chats teaser (Python)", (2023), YouTube/@AAA4Prediction.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

JupyterChatbook-0.0.16.tar.gz (11.4 kB view details)

Uploaded Source

Built Distribution

JupyterChatbook-0.0.16-py3-none-any.whl (11.4 kB view details)

Uploaded Python 3

File details

Details for the file JupyterChatbook-0.0.16.tar.gz.

File metadata

  • Download URL: JupyterChatbook-0.0.16.tar.gz
  • Upload date:
  • Size: 11.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for JupyterChatbook-0.0.16.tar.gz
Algorithm Hash digest
SHA256 1e219d1e902c70ca466c8828890a57f732747e4426abae73c208f91573218ffb
MD5 247ed8517c14480071b35caa10eff32f
BLAKE2b-256 d8c9b9d44b471b66ec973309437c323520ca562c194e0d1c660ba94c5703d199

See more details on using hashes here.

File details

Details for the file JupyterChatbook-0.0.16-py3-none-any.whl.

File metadata

File hashes

Hashes for JupyterChatbook-0.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 c6ae19ba1fc37836860f62dea4cae02afb3c8899e2d2fa6fa4fd9bebb4b03c32
MD5 e4f76a3335e40f263bfbce337c7b00b7
BLAKE2b-256 d35be94f42ccd1a9a62e1b6b7b92ae4eb23af8fe4f040cb359d8bc69167f0101

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page