KKKF: a library for Python implementation of Kernel-Koopman-Kalman Filter.
Project description
KKKF - Kernel Koopman Kalman Filter
KKKF is a Python library that implements kernel Extended Dynamic Mode Decomposition (EDMD) of Koopman operators and provides a non-linear variant of the Kalman Filter. This library is particularly useful for state estimation in dynamical systems with non-linear behavior.
Installation
You can install KKKF using pip:
pip install KKKF
Features
- Kernel-based Extended Dynamic Mode Decomposition (EDMD)
- Non-linear Kalman Filter implementation
- Support for additive dynamical systems
- Integration with various kernel functions (e.g., Matérn kernel)
- Robust state estimation with noise handling
Dependencies
- NumPy
- SciPy
- scikit-learn (for kernel functions)
Quick Start
Here's a simple example of using KKKF to estimate states in a SIR (Susceptible-Infected-Recovered) model:
import numpy as np
from scipy import stats
from sklearn.gaussian_process.kernels import Matern
from KKKF import AdditiveDynamicalSystem, Koopman, KoopmanKalmanFilter
# Define system parameters
beta, gamma = 0.12, 0.04
# Define system dynamics
def f(x):
return x + np.array([-beta*x[0]*x[1], beta*x[0]*x[1] - gamma*x[1], gamma*x[1]])
def g(x):
return np.array([x[1]])
# Setup system dimensions and kernel
N = 300
nx, ny = 3, 1
k = Matern(length_scale=N**(-1/nx), nu=0.5)
# Setup distributions
X_dist = stats.dirichlet(alpha=1*np.ones(nx))
dyn_dist = stats.multivariate_normal(mean=np.zeros(3), cov=1e-5*np.eye(3))
obs_dist = stats.multivariate_normal(mean=np.zeros(1), cov=1e-3*np.eye(1))
# Create dynamical system
dyn = AdditiveDynamicalSystem(nx, ny, f, g, X_dist, dyn_dist, obs_dist)
# Initialize Koopman operator and Kalman filter
x0_prior = np.array([0.8, 0.15, 0.05])
d0 = stats.multivariate_normal(mean=x0_prior, cov=0.1*np.eye(3))
Koop = Koopman(k, dyn)
sol = KoopmanKalmanFilter(Koop, y, d0, N, noise_samples=100)
API Reference
AdditiveDynamicalSystem
AdditiveDynamicalSystem(nx, ny, f, g, X_dist, dyn_dist, obs_dist)
Creates an additive dynamical system with:
nx
: State dimensionny
: Observation dimensionf
: State transition functiong
: Observation functionX_dist
: State distributiondyn_dist
: Dynamic noise distributionobs_dist
: Observation noise distribution
Koopman
Koopman(kernel, dynamical_system)
Initializes a Koopman operator with:
kernel
: Kernel function (e.g., Matérn kernel)dynamical_system
: Instance of AdditiveDynamicalSystem
KoopmanKalmanFilter
KoopmanKalmanFilter(koopman, observations, initial_distribution, N, noise_samples=100)
Implements the Koopman-based Kalman filter with:
koopman
: Koopman operator instanceobservations
: Observation datainitial_distribution
: Initial state distributionN
: Number of samplesnoise_samples
: Number of noise samples for uncertainty estimation
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Citation
If you use this library in your research, please cite:
@software{kkkf,
title = {KKKF: Kernel Koopman Kalman Filter},
year = {2024},
author = {[Author Name]},
url = {https://github.com/[username]/KKKF}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file kkkf-0.2.tar.gz
.
File metadata
- Download URL: kkkf-0.2.tar.gz
- Upload date:
- Size: 9.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.11.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 55576630ef95255267166529f1860bea7cd01750c0cc4cbfc17670579da08c5e |
|
MD5 | 07f133b0057cc6277a296758c588d367 |
|
BLAKE2b-256 | f6396a96e82ea9515c51ca48c6c3caf3ccbb586462b4f38e040aa2dae745ebdb |
File details
Details for the file KKKF-0.2-py3-none-any.whl
.
File metadata
- Download URL: KKKF-0.2-py3-none-any.whl
- Upload date:
- Size: 11.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.11.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d20caf1fc375c4546a4c33c468d4c6b7815bb00e66eb4be3ff22aebd50f44143 |
|
MD5 | 219079136c084a2887981f14e3671e4d |
|
BLAKE2b-256 | ce51051d16441959729477460103529ba3a86dbe4e2eee3de862e20f52961c5d |