Skip to main content

Implements several boosting algorithms in Python

Project description

KTBoost - A Python Package for Boosting

This Python package implements several boosting algorithms with different combinations of base learners, optimization algorithms, and loss functions.

Description

Concerning base learners, KTboost includes:

  • Trees
  • Kernel Ridge regression
  • A combination of the two (i.e., the KTBoost algorithm)

Concerning the optimization step for finding the boosting updates, the package supports:

  • Gradient descent
  • Newton-Rahson method
  • A hybrid version of the two for trees as base learners

The package implements the following loss functions:

  • Continuous data ("regression"): quadratic loss (L2 loss), absolute error (L1 loss), Huber loss, quantile regression loss, Gamma regression loss, negative Gaussian likelihood with both the mean and the standard deviation as functions of features
  • Count data ("regression"): Poisson regression loss
  • (Unorderd) Categorical data ("classification"): logistic regression loss (log loss), exponential loss, cross entropy loss with softmax
  • Mixed continuous-categorical data ("censored regression"): negative Tobit likelihood (i.e., the Grabit model)

Installation

It can be installed using

pip install -U KTBoost

and then loaded using

import KTBoost.KTBoost as KTBoost

Usage and examples

The package re-uses code from scikit-learn and its workflow is very similar to that of scikit-learn.

The two main classes are KTBoost.BoostingClassifier and KTBoost.BoostingRegressor.

The following code example defines models, trains them, and makes predictions.

import KTBoost.KTBoost as KTBoost

######################################
## Define models (several examples) ##
######################################
## Standard tree boosting for regression with quadratic loss and hybrid gradient-Newton updates as in Friedman (2001)
model = KTBoost.BoostingRegressor(loss='ls')
## Grabit model as in Sigrist and Hirnschall (2018)
model = KTBoost.BoostingRegressor(loss='tobit')
## KTBoost algorithm for classification with Newton updates
model = KTBoost.BoostingClassifier(loss='deviance',base_learner='combined',update_step='newton')
## Gradient boosting for classification with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='gradient')
## Newton boosting for classification model with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='newton')
## Hybrid gradient-Newton boosting (Friedman, 2001) for classification with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='hybrid')
## Kernel boosting for regression with quadratic loss
model = KTBoost.BoostingRegressor(loss='ls',base_learner='kernel')
## Regression model where both the mean and the standard deviation depend on the covariates / features
model = KTBoost.BoostingRegressor(loss='msr')

##################
## Train models ##
##################
model.fit(Xtrain,ytrain)

######################
## Make predictions ##
######################
model.predict(Xpred)

References

  • Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting. The annals of statistics, 28(2), 337-407.
  • Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
  • Sigrist, F. (2018). Gradient and Newton Boosting for Classification and Regression. arXiv preprint arXiv:1808.03064.
  • Sigrist, F., & Hirnschall, C. (2017). Grabit: Gradient Tree Boosted Tobit Models for Default Prediction. arXiv preprint arXiv:1711.08695.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

KTBoost-0.0.10.tar.gz (47.0 kB view details)

Uploaded Source

Built Distribution

KTBoost-0.0.10-py2-none-any.whl (51.4 kB view details)

Uploaded Python 2

File details

Details for the file KTBoost-0.0.10.tar.gz.

File metadata

  • Download URL: KTBoost-0.0.10.tar.gz
  • Upload date:
  • Size: 47.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.14

File hashes

Hashes for KTBoost-0.0.10.tar.gz
Algorithm Hash digest
SHA256 e4c72470db17d4a3080214b0ae84c6e9cbce1222a253ee06bbdde47a75b01d0c
MD5 ee10c646e9ef47813d13709420ac87bd
BLAKE2b-256 d90341b0af8e899a40aa714fda367ca3077a986d0518b84c25511506bb5c4288

See more details on using hashes here.

File details

Details for the file KTBoost-0.0.10-py2-none-any.whl.

File metadata

  • Download URL: KTBoost-0.0.10-py2-none-any.whl
  • Upload date:
  • Size: 51.4 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.14

File hashes

Hashes for KTBoost-0.0.10-py2-none-any.whl
Algorithm Hash digest
SHA256 b0dd72d2144a59d7503cefbaf8fcb1ef636427e4969830f74764a87b62183b09
MD5 dd04af53460da6dee0ebc03504d75253
BLAKE2b-256 6c6b15de6a66444254d79a02c92e164145473cbdf15be5630f6b1f68706c33d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page