Implements several boosting algorithms in Python
Project description
KTBoost - A Python Package for Boosting
This Python package implements several boosting algorithms with different combinations of base learners, optimization algorithms, and loss functions.
Description
Concerning base learners, KTboost includes:
- Trees
- Kernel Ridge regression (a.k.a. penalized reproducing kernel Hilbert space (RKHS) regression or (the mean of) Gaussian process regression)
- A combination of the two (i.e., the KTBoost algorithm)
Concerning the optimization step for finding the boosting updates, the package supports:
- Gradient descent
- Newton-Rahson method (if applicable)
- A hybrid version of the two for trees as base learners
The package implements the following loss functions:
- Continuous data ("regression"): quadratic loss (L2 loss), absolute error (L1 loss), Huber loss, quantile regression loss, Gamma regression loss, negative Gaussian log-likelihood with both the mean and the standard deviation as functions of features
- Count data ("regression"): Poisson regression loss
- (Unorderd) Categorical data ("classification"): logistic regression loss (log loss), exponential loss, cross entropy loss with softmax
- Mixed continuous-categorical data ("censored regression"): negative Tobit likelihood (i.e., the Grabit model)
Installation
It can be installed using
pip install -U KTBoost
and then loaded using
import KTBoost.KTBoost as KTBoost
Usage and examples
The package re-uses code from scikit-learn and its workflow is very similar to that of scikit-learn.
The two main classes are KTBoost.BoostingClassifier
and KTBoost.BoostingRegressor
.
The following code example defines models, trains them, and makes predictions.
import KTBoost.KTBoost as KTBoost
################################################
## Define model (see below for more examples) ##
################################################
## Standard tree boosting for regression with quadratic loss and hybrid gradient-Newton updates as in Friedman (2001)
model = KTBoost.BoostingRegressor(loss='ls')
##################
## Train models ##
##################
model.fit(Xtrain,ytrain)
######################
## Make predictions ##
######################
model.predict(Xpred)
#############################
## More examples of models ##
#############################
## Grabit model (Sigrist and Hirnschall, 2017) with lower and upper limits at 0 and 100
model = KTBoost.BoostingRegressor(loss='tobit',yl=0,yu=100)
## KTBoost algorithm for classification with Newton updates
model = KTBoost.BoostingClassifier(loss='deviance',base_learner='combined',update_step='newton')
## Gradient boosting for classification with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='gradient')
## Newton boosting for classification model with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='newton')
## Hybrid gradient-Newton boosting (Friedman, 2001) for classification with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='hybrid')
## Kernel boosting for regression with quadratic loss
model = KTBoost.BoostingRegressor(loss='ls',base_learner='kernel')
## Regression model where both the mean and the standard deviation depend on the covariates / features
model = KTBoost.BoostingRegressor(loss='msr')
Author
Fabio Sigrist
References
- Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting. The annals of statistics, 28(2), 337-407.
- Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
- Sigrist, F. (2018). Gradient and Newton Boosting for Classification and Regression. arXiv preprint arXiv:1808.03064.
- Sigrist, F., & Hirnschall, C. (2017). Grabit: Gradient Tree Boosted Tobit Models for Default Prediction. arXiv preprint arXiv:1711.08695.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file KTBoost-0.0.11.tar.gz
.
File metadata
- Download URL: KTBoost-0.0.11.tar.gz
- Upload date:
- Size: 47.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b70af78caf55f3de5ff377b75424a6289edef18f6d65437ff9ef2cc9aac6d2b2 |
|
MD5 | a5fa1c13348d5d3888d6d0e85e7cfbac |
|
BLAKE2b-256 | f003bb0185c3cdd1fc40f52e1a1ac5066f9f0a1d303b989dd2189cae8f1d6856 |
File details
Details for the file KTBoost-0.0.11-py2-none-any.whl
.
File metadata
- Download URL: KTBoost-0.0.11-py2-none-any.whl
- Upload date:
- Size: 51.5 kB
- Tags: Python 2
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 77bf57ad1ba0d7bf096489d55d913c8101b1d098224392256066a16e19e78cf2 |
|
MD5 | 62bb5ab1e5ab56e604d0e7d1fd1dd560 |
|
BLAKE2b-256 | a48454135421bc4ba2c766b03570ddaceba91285360a6b5ad0a18564dd52bb48 |