Skip to main content

Implements several boosting algorithms in Python

Project description

KTBoost - A Python Package for Boosting

This Python package implements several boosting algorithms with different combinations of base learners, optimization algorithms, and loss functions.

Description

Concerning base learners, KTboost includes:

  • Trees
  • Reproducing kernel Hilbert space (RKHS) ridge regression functions (i.e., posterior means of Gaussian processes)
  • A combination of the two (i.e., the KTBoost algorithm)

Concerning the optimization step for finding the boosting updates, the package supports:

  • Gradient descent
  • Newton method (if applicable)
  • A hybrid version of the two for trees as base learners

The package implements the following loss functions:

  • Continuous data ("regression"): quadratic loss (L2 loss), absolute error (L1 loss), Huber loss, quantile regression loss, Gamma regression loss, negative Gaussian log-likelihood with both the mean and the standard deviation as functions of features
  • Count data ("regression"): Poisson regression loss
  • (Unorderd) Categorical data ("classification"): logistic regression loss (log loss), exponential loss, cross entropy loss with softmax
  • Mixed continuous-categorical data ("censored regression"): negative Tobit likelihood (i.e., the Grabit model)

Installation

It can be installed using

pip install -U KTBoost

and then loaded using

import KTBoost.KTBoost as KTBoost

Usage and examples

The package re-uses code from scikit-learn and its workflow is very similar to that of scikit-learn.

The two main classes are KTBoost.BoostingClassifier and KTBoost.BoostingRegressor.

The following code example defines models, trains them, and makes predictions.

import KTBoost.KTBoost as KTBoost

################################################
## Define model (see below for more examples) ##
################################################
## Standard tree boosting for regression with quadratic loss and hybrid gradient-Newton updates as in Friedman (2001)
model = KTBoost.BoostingRegressor(loss='ls')

##################
## Train models ##
##################
model.fit(Xtrain,ytrain)

######################
## Make predictions ##
######################
model.predict(Xpred)

#############################
## More examples of models ##
#############################
## Boosted Tobit model, i.e. Grabit model (Sigrist and Hirnschall, 2017), 
## with lower and upper limits at 0 and 100
model = KTBoost.BoostingRegressor(loss='tobit',yl=0,yu=100)
## KTBoost algorithm (combined kernel and tree boosting) for classification with Newton updates
model = KTBoost.BoostingClassifier(loss='deviance',base_learner='combined',
                                    update_step='newton',theta=1)
## Gradient boosting for classification with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='gradient')
## Newton boosting for classification model with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='newton')
## Hybrid gradient-Newton boosting (Friedman, 2001) for classification with 
## trees as base learners (this is the version that scikit-learn implements)
model = KTBoost.BoostingClassifier(loss='deviance',update_step='hybrid')
## Kernel boosting for regression with quadratic loss
model = KTBoost.BoostingRegressor(loss='ls',base_learner='kernel',theta=1)
## Kernel boosting with the Nystroem method and the range parameter theta chosen 
## as the average distance to the 100-nearest neighbors (of the Nystroem samples)
model = KTBoost.BoostingRegressor(loss='ls',base_learner='kernel',nystroem=True,
                                  n_components=1000,theta=None,n_neighbors=100)
## Regression model where both the mean and the standard deviation depend 
## on the covariates / features
model = KTBoost.BoostingRegressor(loss='msr')

Author

Fabio Sigrist

References

  • Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting. The annals of statistics, 28(2), 337-407.
  • Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
  • Sigrist, F. (2018). Gradient and Newton Boosting for Classification and Regression. arXiv preprint arXiv:1808.03064.
  • Sigrist, F., & Hirnschall, C. (2017). Grabit: Gradient Tree Boosted Tobit Models for Default Prediction. arXiv preprint arXiv:1711.08695.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

KTBoost-0.0.13.tar.gz (47.3 kB view details)

Uploaded Source

Built Distribution

KTBoost-0.0.13-py2-none-any.whl (51.6 kB view details)

Uploaded Python 2

File details

Details for the file KTBoost-0.0.13.tar.gz.

File metadata

  • Download URL: KTBoost-0.0.13.tar.gz
  • Upload date:
  • Size: 47.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.14

File hashes

Hashes for KTBoost-0.0.13.tar.gz
Algorithm Hash digest
SHA256 d5defc21a7cd6de223e00d45c72f5fcb695745a8b0a96ce0cc51e1bf66fe0a39
MD5 2af2216900ae863fa8e9501f48d4051a
BLAKE2b-256 e727599a83c933e1ec9df18171a493a1ec349152b71cb309c4b861d3edb6dd80

See more details on using hashes here.

File details

Details for the file KTBoost-0.0.13-py2-none-any.whl.

File metadata

  • Download URL: KTBoost-0.0.13-py2-none-any.whl
  • Upload date:
  • Size: 51.6 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.14

File hashes

Hashes for KTBoost-0.0.13-py2-none-any.whl
Algorithm Hash digest
SHA256 84dc0ec7419d14cbbf6e07a6f048a3d7a637bb7ca71f755e8e0caf6254b2d8f9
MD5 3f1cf70c86c5827f8f62dcae7f984aae
BLAKE2b-256 f97ddd3dbd4267e121d273ec38ab433cb2f1483a1c95d737c9524929dc1d2227

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page