Skip to main content

Implements several boosting algorithms in Python

Project description

KTBoost - A Python Package for Boosting

This Python package implements several boosting algorithms with different combinations of base learners, optimization algorithms, and loss functions.

Description

Concerning base learners, KTboost includes:

  • Trees
  • Reproducing kernel Hilbert space (RKHS) ridge regression functions (i.e., posterior means of Gaussian processes)
  • A combination of the two (i.e., the KTBoost algorithm)

Concerning the optimization step for finding the boosting updates, the package supports:

  • Gradient descent
  • Newton method (if applicable)
  • A hybrid version of the two for trees as base learners

The package implements the following loss functions:

  • Continuous data ("regression"): quadratic loss (L2 loss), absolute error (L1 loss), Huber loss, quantile regression loss, Gamma regression loss, negative Gaussian log-likelihood with both the mean and the standard deviation as functions of features
  • Count data ("regression"): Poisson regression loss
  • (Unorderd) Categorical data ("classification"): logistic regression loss (log loss), exponential loss, cross entropy loss with softmax
  • Mixed continuous-categorical data ("censored regression"): negative Tobit likelihood (i.e., the Grabit model)

Installation

It can be installed using

pip install -U KTBoost

and then loaded using

import KTBoost.KTBoost as KTBoost

Usage and examples

The package is build as an extension of the scikit-learn implementation of boosting algorithms and its workflow is very similar to that of scikit-learn.

The two main classes are KTBoost.BoostingClassifier and KTBoost.BoostingRegressor.

The following code examples show how the package can be used.

Define models, train models, make predictions

import KTBoost.KTBoost as KTBoost

################################################
## Define model (see below for more examples) ##
################################################
## Standard tree-boosting for regression with quadratic loss and hybrid gradient-Newton updates as in Friedman (2001)
model = KTBoost.BoostingRegressor(loss='ls')

##################
## Train models ##
##################
model.fit(Xtrain,ytrain)

######################
## Make predictions ##
######################
model.predict(Xpred)

More examples of models

#############################
## More examples of models ##
#############################
## Boosted Tobit model, i.e. Grabit model (Sigrist and Hirnschall, 2017), 
## with lower and upper limits at 0 and 100
model = KTBoost.BoostingRegressor(loss='tobit',yl=0,yu=100)
## KTBoost algorithm (combined kernel and tree boosting) for classification with Newton updates
model = KTBoost.BoostingClassifier(loss='deviance',base_learner='combined',
                                    update_step='newton',theta=1)
## Gradient boosting for classification with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='gradient')
## Newton boosting for classification model with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='newton')
## Hybrid gradient-Newton boosting (Friedman, 2001) for classification with 
## trees as base learners (this is the version that scikit-learn implements)
model = KTBoost.BoostingClassifier(loss='deviance',update_step='hybrid')
## Kernel boosting for regression with quadratic loss
model = KTBoost.BoostingRegressor(loss='ls',base_learner='kernel',theta=1)
## Kernel boosting with the Nystroem method and the range parameter theta chosen 
## as the average distance to the 100-nearest neighbors (of the Nystroem samples)
model = KTBoost.BoostingRegressor(loss='ls',base_learner='kernel',nystroem=True,
                                  n_components=1000,theta=None,n_neighbors=100)
## Regression model where both the mean and the standard deviation depend 
## on the covariates / features
model = KTBoost.BoostingRegressor(loss='msr')

Feature importances and partial dependence plots

#########################
## Feature importances ## (only defined for trees as base learners)
#########################
Xtrain=np.random.rand(1000,10)
ytrain=2*Xtrain[:,0]+2*Xtrain[:,1]+np.random.rand(1000)

model = KTBoost.BoostingRegressor()
model.fit(Xtrain,ytrain)
## Extract feature importances calculated as described in Friedman (2001)
feat_imp = model.feature_importances_

## Alternatively, plot feature importances directly
KTBoost.plot_feature_importances(model=model,feature_names=feature_names,maxFeat=10)

##############################
## Partial dependence plots ## (currently only implemented for trees as base learners)
##############################
from KTBoost.partial_dependence import plot_partial_dependence
import matplotlib.pyplot as plt
features = [0,1,2,3,4,5]
fig, axs = plot_partial_dependence(model,Xtrain,features,percentiles=(0,1),figsize=(8,6))
plt.subplots_adjust(top=0.9)
fig.suptitle('Partial dependence plots')

## Alternatively, get partial dependencies in numerical form
from KTBoost.partial_dependence import partial_dependence
kwargs = dict(X=Xtrain, percentiles=(0, 1))
partial_dependence(model,[0],**kwargs)

Author

Fabio Sigrist

References

  • Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. The annals of statistics, 1189-1232.
  • Sigrist, F., & Hirnschall, C. (2017). Grabit: Gradient Tree Boosted Tobit Models for Default Prediction. arXiv preprint arXiv:1711.08695.
  • Sigrist, F. (2018). Gradient and Newton Boosting for Classification and Regression. arXiv preprint arXiv:1808.03064.
  • Sigrist, F. (2019). KTBoost: Combined Kernel and Tree Boosting. arXiv preprint arXiv:1902.03999.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

KTBoost-0.1.1.tar.gz (53.2 kB view hashes)

Uploaded Source

Built Distribution

KTBoost-0.1.1-py2-none-any.whl (58.0 kB view hashes)

Uploaded Python 2

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page