No project description provided
Project description
[![Project Status: Active](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![Build Status](https://travis-ci.org/stephenslab/clusteringCPC.svg?branch=master)](https://travis-ci.org/stephenslab/clusteringCPC) [![codecov](https://codecov.io/gh/stephenslab/clusteringCPC/branch/master/graph/badge.svg)](https://codecov.io/gh/stephenslab/clusteringCPC) [![CRAN_Status_Badge](http://www.r-pkg.org/badges/version/clusteringCPC)](https://cran.r-project.org/package=clusteringCPC) [![CRAN_Download_Badge](http://cranlogs.r-pkg.org/badges/clusteringCPC)](https://cran.r-project.org/package=clusteringCPC)
## Install the Package from PyPI + Go to the terminal (mac) or command line (windows), copy and paste:pip3 install KTensors or pip3 install KTensors==0.0.5 for a specific version
## install the Package from GitHub
Go to the terminal (mac) or command line (windows), copy and paste:pip3 install git+https://github.com/Hanchao-Zhang/KTensors.git
Open a python console, copy and paste: from KTensors import KTensors
## About the Package
### KTensors
KTensors(Psis, K, max_iter=1000).clustering()
input: - Psis: a 3D array of size (n, p, p) where n is the number of matrices and p is the dimension of the positive semi-definite matrices. - K: number of clusters - max_iter: maximum number of iterations, default is 1000, usually finish within 10 iterations
return: - group: a vector of length n, each element is an index of group membership - CPCs: K orthonormal basis matrices of size p by p for each cluster - $mathbf F$: $mathbf F = mathbf B^top mathbfPsi mathbf B$ - $text{diag}(mathbf F)$: $text{diag}(mathbf F) = (mathbf B^top mathbfPsi mathbf B) circ mathbf I$ the diagonal of matrix $mathbf F$ - centers: Mean of each cluster - loss: loss function for each iteration
## Some Tecnical Details
### Loss Function
$$begin{aligned}mathcal L(mathbf Psi, mathcal P_{mathbf B} (mathbf Psi) ) = Vert mathbf Psi - mathbf B((mathbf B^top mathbf Psi mathbf B) circ mathbb I )mathbf B^top Vert_F^2 = Vertmathbf B^top mathbf Psi mathbf B - (mathbf B^top mathbf Psi mathbf B)circ mathbb I Vert_F^2 end{aligned}$$
where $mathbb I$ is a identity matrix, and $circ$ is the Hadamard product.
For more technical details, please refer to the paper.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.