LANDMark: An ensemble approach to the supervised selection of biomarkers in high-throughput sequencing data
Project description
LANDMark
Implementation of a decision tree ensemble which splits each node using learned linear and non-linear functions.
Install
From PyPI:
pip install LANDMarkClassifier
From source:
git clone https://github.com/jrudar/LANDMark.git
cd LANDMark
pip install .
# or create a virtual environment
python -m venv venv
source venv/bin/activate
pip install .
Interface
An overview of the API can be found here.
Usage and Examples
Examples of how to use LANDMark
can be found here.
Contributing
To contribute to the development of LANDMark
please read our contributing guide
Projects Using LANDMark
Rudar J, Kruczkiewicz P, Vernygora O, Golding GB, Hajibabaei M, Lung O. Sequence signatures
within the genome of SARS-CoV-2 can be used to predict host source. Microbiol Spectr.
2024 Apr 2;12(4):e0358423. doi: 10.1128/spectrum.03584-23. Epub 2024 Mar 4. PMID: 38436242.
Rudar J, Golding GB, Kremer SC, Hajibabaei M. Decision Tree Ensembles Utilizing Multivariate
Splits Are Effective at Investigating Beta Diversity in Medically Relevant 16S Amplicon
Sequencing Data. Microbiol Spectr. 2023 Mar 6;11(2):e0206522. doi: 10.1128/spectrum.02065-22.
Epub ahead of print. PMID: 36877086; PMCID: PMC10100742.
Rudar, J., Porter, T.M., Wright, M., Golding G.B., Hajibabaei, M. LANDMark: an ensemble
approach to the supervised selection of biomarkers in high-throughput sequencing data.
BMC Bioinformatics 23, 110 (2022). https://doi.org/10.1186/s12859-022-04631-z
References
Rudar, J., Porter, T.M., Wright, M., Golding G.B., Hajibabaei, M. LANDMark: an ensemble
approach to the supervised selection of biomarkers in high-throughput sequencing data.
BMC Bioinformatics 23, 110 (2022). https://doi.org/10.1186/s12859-022-04631-z
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–30.
Kuncheva LI, Rodriguez JJ. Classifier ensembles with a random linear oracle.
IEEE Transactions on Knowledge and Data Engineering. 2007;19(4):500–8.
Geurts P, Ernst D, Wehenkel L. Extremely Randomized Trees. Machine Learning. 2006;63(1):3–42.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
landmarkclassifier-2.1.1.tar.gz
(327.8 kB
view details)
Built Distribution
File details
Details for the file landmarkclassifier-2.1.1.tar.gz
.
File metadata
- Download URL: landmarkclassifier-2.1.1.tar.gz
- Upload date:
- Size: 327.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | acf569c63240a29bf3989596748169b96951f104ad0628948212422276c76c1e |
|
MD5 | 141800903618f147a8dfb553375f5a5c |
|
BLAKE2b-256 | cea50473aceecb221022372241450f769fbafc431f8a969195f0c720f275c21b |
File details
Details for the file landmarkclassifier-2.1.1-py3-none-any.whl
.
File metadata
- Download URL: landmarkclassifier-2.1.1-py3-none-any.whl
- Upload date:
- Size: 16.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 50f333dad79ed9476c2ce4136a89edfb60d12501515b6e253cf0470d448889df |
|
MD5 | 5173868cc9137af31e708e2f570ef621 |
|
BLAKE2b-256 | 37f7310c6577d7909311c7ba5386e805d4d3a39cc9e4187048f746519d6870dd |