Skip to main content

LANDMark: An ensemble approach to the supervised selection of biomarkers in high-throughput sequencing data

Project description

LANDMark

CI

Implementation of a decision tree ensemble which splits each node using learned linear and non-linear functions.

Install

From PyPI:

pip install LANDMarkClassifier

From source:

git clone https://github.com/jrudar/LANDMark.git
cd LANDMark
pip install .
# or create a virtual environment
python -m venv venv
source venv/bin/activate
pip install .

Interface

An overview of the API can be found here.

Usage and Examples

Examples of how to use LANDMark can be found here.

Contributing

To contribute to the development of LANDMark please read our contributing guide

Projects Using LANDMark

Rudar J, Kruczkiewicz P, Vernygora O, Golding GB, Hajibabaei M, Lung O. Sequence signatures 
within the genome of SARS-CoV-2 can be used to predict host source. Microbiol Spectr. 
2024 Apr 2;12(4):e0358423. doi: 10.1128/spectrum.03584-23. Epub 2024 Mar 4. PMID: 38436242.

Rudar J, Golding GB, Kremer SC, Hajibabaei M. Decision Tree Ensembles Utilizing Multivariate 
Splits Are Effective at Investigating Beta Diversity in Medically Relevant 16S Amplicon 
Sequencing Data. Microbiol Spectr. 2023 Mar 6;11(2):e0206522. doi: 10.1128/spectrum.02065-22. 
Epub ahead of print. PMID: 36877086; PMCID: PMC10100742.

Rudar, J., Porter, T.M., Wright, M., Golding G.B., Hajibabaei, M. LANDMark: an ensemble 
approach to the supervised selection of biomarkers in high-throughput sequencing data. 
BMC Bioinformatics 23, 110 (2022). https://doi.org/10.1186/s12859-022-04631-z

References

Rudar, J., Porter, T.M., Wright, M., Golding G.B., Hajibabaei, M. LANDMark: an ensemble 
approach to the supervised selection of biomarkers in high-throughput sequencing data. 
BMC Bioinformatics 23, 110 (2022). https://doi.org/10.1186/s12859-022-04631-z

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: 
Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–30. 

Kuncheva LI, Rodriguez JJ. Classifier ensembles with a random linear oracle. 
IEEE Transactions on Knowledge and Data Engineering. 2007;19(4):500–8. 

Geurts P, Ernst D, Wehenkel L. Extremely Randomized Trees. Machine Learning. 2006;63(1):3–42. 

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

landmarkclassifier-2.1.1.tar.gz (327.8 kB view details)

Uploaded Source

Built Distribution

landmarkclassifier-2.1.1-py3-none-any.whl (16.5 kB view details)

Uploaded Python 3

File details

Details for the file landmarkclassifier-2.1.1.tar.gz.

File metadata

  • Download URL: landmarkclassifier-2.1.1.tar.gz
  • Upload date:
  • Size: 327.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for landmarkclassifier-2.1.1.tar.gz
Algorithm Hash digest
SHA256 acf569c63240a29bf3989596748169b96951f104ad0628948212422276c76c1e
MD5 141800903618f147a8dfb553375f5a5c
BLAKE2b-256 cea50473aceecb221022372241450f769fbafc431f8a969195f0c720f275c21b

See more details on using hashes here.

File details

Details for the file landmarkclassifier-2.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for landmarkclassifier-2.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 50f333dad79ed9476c2ce4136a89edfb60d12501515b6e253cf0470d448889df
MD5 5173868cc9137af31e708e2f570ef621
BLAKE2b-256 37f7310c6577d7909311c7ba5386e805d4d3a39cc9e4187048f746519d6870dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page