Skip to main content

LARRY Dataset: lineage and RNA recovery

Project description

LARRY dataset

PyPI pyversions PyPI version Code style: black

Installation

pip distribution

pip install larry-dataset

Development version

git clone https://github.com/mvinyard/LARRY-dataset.git; cd LARRY-dataset

pip install -e .

Quickstart

Downloads pre-processed data from AllonKleinLab/paper-data to ./KleinLabData (by default). The data is formatted into AnnData and returned to the user. A .h5ad file is also saved, locally. The data downloading and conversion step take several minutes due to the large expression normed_counts matrices though this only happens once.

import larry
    
dataset = "in_vitro" # can also choose from: "in_vivo" or "cytokine_perturbation"
adata = larry.fetch(dataset)
AnnData object with n_obs × n_vars = 130887 × 25289
    obs: 'Library', 'Cell barcode', 'Time point', 'Starting population', 'Cell type annotation', 'Well', 'SPRING-x', 'SPRING-y'
    var: 'gene_name'
    obsm: 'X_clone'
import larry

LARRY_LightningData = larry.LARRY_LightningDataModule()
LARRY_LightningData.prepare_data()
 AnnData object with n_obs × n_vars = 130887 × 25289
    obs: 'Library', 'Cell barcode', 'Time point', 'Starting population', 'Cell type annotation', 'Well', 'SPRING-x', 'SPRING-y'
    var: 'gene_name'
    uns: 'dataset', 'h5ad_path'
    obsm: 'X_clone'
Preprocessing performed previously. Loading...done.

Under the hood, the LARRY_LightningData calls larry.fetch() and larry.pp.Yeo2021_recipe(), and if task == "fate_prediction", larry.pp.annotate_fate_test_train()

LARRY_LightningData.adata

Print the updated adata:

AnnData object with n_obs × n_vars = 130887 × 25289
    obs: 'Library', 'Cell barcode', 'Time point', 'Starting population', 'Cell type annotation', 'Well', 'SPRING-x', 'SPRING-y', 'cell_idx', 'clone_idx'
    var: 'gene_name', 'highly_variable', 'corr_cell_cycle', 'pass_filter'
    uns: 'dataset', 'h5ad_path', 'highly_variable_genes_idx', 'n_corr_cell_cycle', 'n_hv', 'n_mito', 'n_pass', 'n_total', 'pp_h5ad_path'
    obsm: 'X_clone', 'X_pca', 'X_scaled', 'X_umap'

Sources

Repositories

Reference


Please email Michael E. Vinyard (mvinyard@broadinstitute.org) with any questions or interests.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

LARRY-dataset-0.0.1.tar.gz (1.7 MB view details)

Uploaded Source

Built Distribution

LARRY_dataset-0.0.1-py3-none-any.whl (1.8 MB view details)

Uploaded Python 3

File details

Details for the file LARRY-dataset-0.0.1.tar.gz.

File metadata

  • Download URL: LARRY-dataset-0.0.1.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for LARRY-dataset-0.0.1.tar.gz
Algorithm Hash digest
SHA256 84335021f50bec30095f29b3b050c37285817bf56c76f7d577950d24b75fad76
MD5 1cd5baa805de7e54488aa84f4ae65c69
BLAKE2b-256 b4838b27b81f16eafbb327604487babe28922f8248040166563b85993d290db9

See more details on using hashes here.

File details

Details for the file LARRY_dataset-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for LARRY_dataset-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 920a84b335ddef8e783f0f66adc3366b60b453993289bdf7136e83eb993f6f0b
MD5 d58e27736586f62d3b2f1ec827bf8b3a
BLAKE2b-256 1ca14822d6b091275f29a4a65b807122f568b690fbe80fb1b8c93d961164f18c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page