LARRY Dataset: lineage and RNA recovery
Project description
LARRY dataset
Installation
pip
distribution
pip install larry-dataset
Development version
git clone https://github.com/mvinyard/LARRY-dataset.git; cd LARRY-dataset
pip install -e .
Quickstart
Downloads pre-processed data from AllonKleinLab/paper-data to ./KleinLabData
(by default). The data is formatted into AnnData
and returned to the user. A .h5ad
file is also saved, locally. The data downloading and conversion step take several minutes due to the large expression normed_counts
matrices though this only happens once.
import larry
dataset = "in_vitro" # can also choose from: "in_vivo" or "cytokine_perturbation"
adata = larry.fetch(dataset)
AnnData object with n_obs × n_vars = 130887 × 25289
obs: 'Library', 'Cell barcode', 'Time point', 'Starting population', 'Cell type annotation', 'Well', 'SPRING-x', 'SPRING-y'
var: 'gene_name'
obsm: 'X_clone'
import larry
LARRY_LightningData = larry.LARRY_LightningDataModule()
LARRY_LightningData.prepare_data()
AnnData object with n_obs × n_vars = 130887 × 25289
obs: 'Library', 'Cell barcode', 'Time point', 'Starting population', 'Cell type annotation', 'Well', 'SPRING-x', 'SPRING-y'
var: 'gene_name'
uns: 'dataset', 'h5ad_path'
obsm: 'X_clone'
Preprocessing performed previously. Loading...done.
Under the hood, the LARRY_LightningData
calls larry.fetch()
and larry.pp.Yeo2021_recipe()
, and if task == "fate_prediction"
, larry.pp.annotate_fate_test_train()
LARRY_LightningData.adata
Print the updated adata
:
AnnData object with n_obs × n_vars = 130887 × 25289
obs: 'Library', 'Cell barcode', 'Time point', 'Starting population', 'Cell type annotation', 'Well', 'SPRING-x', 'SPRING-y', 'cell_idx', 'clone_idx'
var: 'gene_name', 'highly_variable', 'corr_cell_cycle', 'pass_filter'
uns: 'dataset', 'h5ad_path', 'highly_variable_genes_idx', 'n_corr_cell_cycle', 'n_hv', 'n_mito', 'n_pass', 'n_total', 'pp_h5ad_path'
obsm: 'X_clone', 'X_pca', 'X_scaled', 'X_umap'
Sources
Repositories
Reference
- Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F.D., Klein, A.M. Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science 80 (2020). https://doi.org/10.1126/science.aaw3381
Please email Michael E. Vinyard (mvinyard@broadinstitute.org) with any questions or interests.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file LARRY-dataset-0.0.1.tar.gz
.
File metadata
- Download URL: LARRY-dataset-0.0.1.tar.gz
- Upload date:
- Size: 1.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 84335021f50bec30095f29b3b050c37285817bf56c76f7d577950d24b75fad76 |
|
MD5 | 1cd5baa805de7e54488aa84f4ae65c69 |
|
BLAKE2b-256 | b4838b27b81f16eafbb327604487babe28922f8248040166563b85993d290db9 |
File details
Details for the file LARRY_dataset-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: LARRY_dataset-0.0.1-py3-none-any.whl
- Upload date:
- Size: 1.8 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 920a84b335ddef8e783f0f66adc3366b60b453993289bdf7136e83eb993f6f0b |
|
MD5 | d58e27736586f62d3b2f1ec827bf8b3a |
|
BLAKE2b-256 | 1ca14822d6b091275f29a4a65b807122f568b690fbe80fb1b8c93d961164f18c |