Unified Explanation Provider For CNNs
Project description
Explain LISA
It takes the following.
img: local path of img to be explained
class_names: the classes available as predictions for the given model
img_shape: shape of the image accepts by the neural network
model: the model to be explained get from tf.keras.models.load_model("your model path")
img1: local path background data point for produce explanations with SHAP
img2: local path background data point for produce explanations with SHAP
scale: for manual image scaling if scaling layer absent in the model to be explained
filter_radius: the pixel value of the radius of the High pass filter
Installation
pip install LISA_CNN_ExplainerV3
How to use it?
Open terminal and type python/python3 according to your OS.
import LISA_CNN_ExplainerV3 as e \n
e.ExplainLISA(img,class_names,img_shape,model,img1,img2,scale,filter_radius) \n
e.displayImages() \n
License
© 2021 Sudil H.P Abeyagunasekera
This repository is licensed under the MIT license. See LICENSE for details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for LISA_CNN_ExplainerV3-0.0.4.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | b7b8c18b2dc09303fede5a1a8de1fa48a6751f2a8940c6953e95d7ddcfa68ab1 |
|
MD5 | 5bb2e317c2c463b6f8c9d26013e45fdf |
|
BLAKE2b-256 | 16206454b18d55b8cdb8d5fc992fe3026bbda169e9198cdef8d55aaffcce6895 |
Hashes for LISA_CNN_ExplainerV3-0.0.4-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7c9942b8191484de912195514c455d82d79a72833d042ecc12de80f452f00d5a |
|
MD5 | 048efa7a70a5adbb96986c18d050439b |
|
BLAKE2b-256 | b24ce166498652ae75c18083f16ad11627e4959e6fe755fc3115ce9e17b2693b |