Skip to main content

Interface to data and layers in the Resource Watch API

Project description

# LMIPy ## The Vizzuality Ecosystem Python Interface

[![Build Status](https://travis-ci.org/Vizzuality/LMIPy.svg?branch=master)](https://travis-ci.org/Vizzuality/LMIPy) [![codecov](https://codecov.io/gh/Vizzuality/LMIPy/branch/master/graph/badge.svg)](https://codecov.io/gh/Vizzuality/LMIPy) [![PyPI](https://img.shields.io/pypi/v/LMIPy.svg?style=flat)](https://pypi.org/project/LMIPy/) ![](https://img.shields.io/pypi/pyversions/LMIPy.svg?style=flat) ![](https://img.shields.io/pypi/wheel/LMIPy.svg?style=flat) [![Documentation Status](https://readthedocs.org/projects/lmipy/badge/?version=latest)](https://lmipy.readthedocs.io/en/latest/?badge=latest) [![License](https://img.shields.io/badge/License-MIT-brightgreen.svg)](https://github.com/Vizzuality/LMIPy/blob/master/LICENSE)

LMIPy is a Python library with hooks to Jupyter, backed by the [Skydipper API](https://github.com/Skydipper). It provides many functions related to adding, analysing and working with open geospatial datasets.

## Read the Docs

[Read the docs pages](https://lmipy.readthedocs.io/en/latest/).

## Installation

pip install LMIPy

## Use

` $ python >>> import LMIPy `

Create a Dataset object based on an existing ID on default (RW) server. ` >>> ds = Dataset('044f4af8-be72-4999-b7dd-13434fc4a394') >>> print(ds) Dataset 044f4af8-be72-4999-b7dd-13434fc4a394 `

Create a Layer object based on an existing ID on default (RW) server. ` >>> ly = Layer(id_hash='dc6f6dd2-0718-4e41-81d2-109866bb9edd') >>> print(ly) Layer dc6f6dd2-0718-4e41-81d2-109866bb9edd `

Create a Table object based on an existing ID. ` >>> table = Table('fbf159d7-a462-4af3-8228-43ee3e3391e7') # return the head of the table as a geopandas dataframe >>> df = table.head(5) # return a query of the table as a geopandas dataframe >>> result = table.query(sql='SELECT count(*) as my_count FROM data WHERE year > 1991 and year < 1995' ) `

Obtain a collection of objects using a search term. ` >>> col = Collection(search='tree',object_type=['dataset'], app=['gfw'],limit=5) >>> print(col) [Dataset 70e2549c-d722-44a6-a8d7-4a385d78565e, Dataset 897ecc76-2308-4c51-aeb3-495de0bdca79, Dataset 89755b9f-df05-4e22-a9bc-05217c8eafc8, Dataset 83f8365b-f40b-4b91-87d6-829425093da1, Dataset 044f4af8-be72-4999-b7dd-13434fc4a394] ` Check the docs for more info!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

LMIPy-0.3.13.tar.gz (26.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

LMIPy-0.3.13-py3-none-any.whl (34.3 kB view details)

Uploaded Python 3

File details

Details for the file LMIPy-0.3.13.tar.gz.

File metadata

  • Download URL: LMIPy-0.3.13.tar.gz
  • Upload date:
  • Size: 26.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.21.0 CPython/3.6.2

File hashes

Hashes for LMIPy-0.3.13.tar.gz
Algorithm Hash digest
SHA256 b56f3591407d553947c37b2ded838f77dad69dc63665357f1892aaaafc45ac99
MD5 0d8d1797e9145dc70d45a8b92b59d3e2
BLAKE2b-256 f70baa6598e9b5843c0825223d324e15bc58930ac7d38c2d67aeda4b97744d4a

See more details on using hashes here.

File details

Details for the file LMIPy-0.3.13-py3-none-any.whl.

File metadata

  • Download URL: LMIPy-0.3.13-py3-none-any.whl
  • Upload date:
  • Size: 34.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.21.0 CPython/3.6.2

File hashes

Hashes for LMIPy-0.3.13-py3-none-any.whl
Algorithm Hash digest
SHA256 1110031a748d9d8598df0281cc82b8e00ce6c94a00f907ad84edbba4e562e039
MD5 8e9bfce3062e760e327d2148a0c28f9e
BLAKE2b-256 05fe53bab562f0cfcbe902b0797cf45b976a1b3805a02399fa1dbee4197b0bd7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page