Skip to main content

Interface to data and layers in the Resource Watch API

Project description

# LMIPy ## The Layer Manager Interface for Python

[![Build Status](https://travis-ci.org/Vizzuality/LMIPy.svg?branch=master)](https://travis-ci.org/Vizzuality/LMIPy) [![codecov](https://codecov.io/gh/Vizzuality/LMIPy/branch/master/graph/badge.svg)](https://codecov.io/gh/Vizzuality/LMIPy) [![PyPI](https://img.shields.io/pypi/v/LMIPy.svg?style=flat)](https://pypi.org/project/LMIPy/) ![](https://img.shields.io/pypi/pyversions/LMIPy.svg?style=flat) ![](https://img.shields.io/pypi/wheel/LMIPy.svg?style=flat) [![Documentation Status](https://readthedocs.org/projects/lmipy/badge/?version=latest)](https://lmipy.readthedocs.io/en/latest/?badge=latest) [![License](https://img.shields.io/badge/License-MIT-brightgreen.svg)](https://github.com/Vizzuality/LMIPy/blob/master/LICENSE)

LMIPy is a Python library with hooks to Jupyter, backed by the [Skydipper API](https://github.com/Skydipper). It provides many functions related to adding, analysing and working with open geospatial datasets.

## Read the Docs

[Read the docs pages](https://lmipy.readthedocs.io/en/latest/).

## Installation

pip install LMIPy

## Use

` $ python >>> import LMIPy `

Create a Dataset object based on an existing ID on default (RW) server. ` >>> ds = Dataset('044f4af8-be72-4999-b7dd-13434fc4a394') >>> print(ds) Dataset 044f4af8-be72-4999-b7dd-13434fc4a394 `

Create a Layer object based on an existing ID on default (RW) server. ` >>> ly = Layer(id_hash='dc6f6dd2-0718-4e41-81d2-109866bb9edd') >>> print(ly) Layer dc6f6dd2-0718-4e41-81d2-109866bb9edd `

Create a Table object based on an existing ID. ` >>> table = Table('fbf159d7-a462-4af3-8228-43ee3e3391e7') # return the head of the table as a geopandas dataframe >>> df = table.head(5) # return a query of the table as a geopandas dataframe >>> result = table.query(sql='SELECT count(*) as my_count FROM data WHERE year > 1991 and year < 1995' ) `

Obtain a collection of objects using a search term. ` >>> col = Collection(search='tree',object_type=['dataset'], app=['gfw'],limit=5) >>> print(col) [Dataset 70e2549c-d722-44a6-a8d7-4a385d78565e, Dataset 897ecc76-2308-4c51-aeb3-495de0bdca79, Dataset 89755b9f-df05-4e22-a9bc-05217c8eafc8, Dataset 83f8365b-f40b-4b91-87d6-829425093da1, Dataset 044f4af8-be72-4999-b7dd-13434fc4a394] ` Check the docs for more info!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

LMIPy-0.3.5.tar.gz (26.2 kB view hashes)

Uploaded Source

Built Distribution

LMIPy-0.3.5-py3-none-any.whl (33.2 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page