Skip to main content

LMR turbo

Project description

https://zenodo.org/badge/DOI/10.5281/zenodo.2655097.svg https://img.shields.io/github/last-commit/fzhu2e/LMRt/master https://img.shields.io/github/license/fzhu2e/LMRt https://img.shields.io/pypi/pyversions/LMRt https://img.shields.io/pypi/v/LMRt.svg

LMR Turbo (LMRt)

LMR Turbo (LMRt) is a lightweight, packaged version of the Last Millennium Reanalysia (LMR) framework, inspired by LMR_lite.py originated by Professor Hakim. LMRt aims to provide following extra features:

  • a package that is easy to install and import in scripts or Jupyter notebooks

  • modularized workflows at different levels:

    • the low-level workflow focuses on the flexibility and customizability

    • the high-level workflow focuses on the convenience of repeating Monte-Carlo iterations

    • the top-level workflow focuses on the convenience of reproducing an experiment purely based on a given configuration YAML file

  • convenient visualization functionalities for diagnosis and validations (leveraging the Series and EnsembleSeries of the Pyleoclim UI)

A preview of results

Mean temperature

Mean temperature

Niño 3.4 index

Niño 3.4

Documentation

References of the LMR framework

  • Hakim, G. J., J. Emile‐Geay, E. J. Steig, D. Noone, D. M. Anderson, R. Tardif, N. Steiger, and W. A. Perkins, 2016: The last millennium climate reanalysis project: Framework and first results. Journal of Geophysical Research: Atmospheres, 121, 6745–6764, https://doi.org/10.1002/2016JD024751.

  • Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P., Emile-Geay, J., et al. (2019). Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling. Climate of the Past, 15(4), 1251–1273. https://doi.org/10.5194/cp-15-1251-2019

Published studies using LMRt

  • Zhu, F., Emile‐Geay, J., Hakim, G. J., King, J., & Anchukaitis, K. J. (2020). Resolving the Differences in the Simulated and Reconstructed Temperature Response to Volcanism. Geophysical Research Letters, 47(8), e2019GL086908. https://doi.org/10.1029/2019GL086908

  • Zhu, F., Emile-Geay, J., Anchukaitis, K., Hakim, G., Wittenberg, A., Morales, M., & King, J. (2021). Volcanoes and ENSO: a re-appraisal with the Last Millennium Reanalysis. https://doi.org/10.21203/rs.3.rs-130239/v1

How to cite

If you find this package useful, please cite it with DOI: 10.5281/zenodo.2655097

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

LMRt-0.7.4.tar.gz (40.0 kB view details)

Uploaded Source

File details

Details for the file LMRt-0.7.4.tar.gz.

File metadata

  • Download URL: LMRt-0.7.4.tar.gz
  • Upload date:
  • Size: 40.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8

File hashes

Hashes for LMRt-0.7.4.tar.gz
Algorithm Hash digest
SHA256 e3cc8a198750e09fe20f84058b3952c0d3c68158097928cb0cb0dd1801d9b7ab
MD5 95af29fc50a203fb3a916639f1bf5986
BLAKE2b-256 d15b87570d2700975bb829e76fdd7b4b88bff9979f63f37c14c44bb0f17b79fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page