Skip to main content

LMR turbo

Project description

https://zenodo.org/badge/DOI/10.5281/zenodo.2655097.svg https://img.shields.io/github/last-commit/fzhu2e/LMRt/master https://img.shields.io/github/license/fzhu2e/LMRt https://img.shields.io/pypi/pyversions/LMRt https://img.shields.io/pypi/v/LMRt.svg

LMR Turbo (LMRt)

LMR Turbo (LMRt) is a lightweight, packaged version of the Last Millennium Reanalysia (LMR) framework, inspired by LMR_lite.py originated by Professor Hakim. LMRt aims to provide following extra features:

  • a package that is easy to install and import in scripts or Jupyter notebooks

  • modularized workflows at different levels:

    • the low-level workflow focuses on the flexibility and customizability

    • the high-level workflow focuses on the convenience of repeating Monte-Carlo iterations

    • the top-level workflow focuses on the convenience of reproducing an experiment purely based on a given configuration YAML file

  • convenient visualization functionalities for diagnosis and validations (leveraging the Series and EnsembleSeries of the Pyleoclim UI)

A preview of the results

Mean temperature

Mean temperature

Niño 3.4 index

Niño 3.4

Documentation

References of the LMR framework

  • Hakim, G. J., J. Emile‐Geay, E. J. Steig, D. Noone, D. M. Anderson, R. Tardif, N. Steiger, and W. A. Perkins, 2016: The last millennium climate reanalysis project: Framework and first results. Journal of Geophysical Research: Atmospheres, 121, 6745–6764, https://doi.org/10.1002/2016JD024751.

  • Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P., Emile-Geay, J., et al. (2019). Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling. Climate of the Past, 15(4), 1251–1273. https://doi.org/10.5194/cp-15-1251-2019

Published studies using LMRt

  • Zhu, F., Emile‐Geay, J., Hakim, G. J., King, J., & Anchukaitis, K. J. (2020). Resolving the Differences in the Simulated and Reconstructed Temperature Response to Volcanism. Geophysical Research Letters, 47(8), e2019GL086908. https://doi.org/10.1029/2019GL086908

  • Zhu, F., Emile-Geay, J., Anchukaitis, K., Hakim, G., Wittenberg, A., Morales, M., & King, J. (2021). Volcanoes and ENSO: a re-appraisal with the Last Millennium Reanalysis. https://doi.org/10.21203/rs.3.rs-130239/v1

How to cite

If you find this package useful, please cite it with DOI: 10.5281/zenodo.2655097

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

LMRt-0.7.6.tar.gz (40.4 kB view details)

Uploaded Source

File details

Details for the file LMRt-0.7.6.tar.gz.

File metadata

  • Download URL: LMRt-0.7.6.tar.gz
  • Upload date:
  • Size: 40.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8

File hashes

Hashes for LMRt-0.7.6.tar.gz
Algorithm Hash digest
SHA256 38767758c54d73b329896540b64b2247ba40845565cc8bdaffafdb9a29b1cf95
MD5 26d6b90ee4a62b2606bfe277a61145a1
BLAKE2b-256 1cc87e0c70b271b2b7f331d950459607a6ff0e747d8b0a6c4fdcf237fc4110e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page