A lightweight library to build and train neural networks in Theano
Project description
Lasagne
Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are:
Supports feed-forward networks such as Convolutional Neural Networks (CNNs), recurrent networks including Long Short-Term Memory (LSTM), and any combination thereof
Allows architectures of multiple inputs and multiple outputs, including auxiliary classifiers
Many optimization methods including Nesterov momentum, RMSprop and ADAM
Freely definable cost function and no need to derive gradients due to Theano’s symbolic differentiation
Transparent support of CPUs and GPUs due to Theano’s expression compiler
Its design is governed by six principles:
Simplicity: Be easy to use, easy to understand and easy to extend, to facilitate use in research
Transparency: Do not hide Theano behind abstractions, directly process and return Theano expressions or Python / numpy data types
Modularity: Allow all parts (layers, regularizers, optimizers, …) to be used independently of Lasagne
Pragmatism: Make common use cases easy, do not overrate uncommon cases
Restraint: Do not obstruct users with features they decide not to use
Focus: “Do one thing and do it well”
Installation
In short, you can install a known compatible version of Theano and the latest Lasagne development version via:
pip install -r https://raw.githubusercontent.com/Lasagne/Lasagne/master/requirements.txt
pip install https://github.com/Lasagne/Lasagne/archive/master.zip
For more details and alternatives, please see the Installation instructions.
Documentation
Documentation is available online: http://lasagne.readthedocs.org/
For support, please refer to the lasagne-users mailing list.
Example
import lasagne
import theano
import theano.tensor as T
# create Theano variables for input and target minibatch
input_var = T.tensor4('X')
target_var = T.ivector('y')
# create a small convolutional neural network
from lasagne.nonlinearities import leaky_rectify, softmax
network = lasagne.layers.InputLayer((None, 3, 32, 32), input_var)
network = lasagne.layers.Conv2DLayer(network, 64, (3, 3),
nonlinearity=leaky_rectify)
network = lasagne.layers.Conv2DLayer(network, 32, (3, 3),
nonlinearity=leaky_rectify)
network = lasagne.layers.Pool2DLayer(network, (3, 3), stride=2, mode='max')
network = lasagne.layers.DenseLayer(lasagne.layers.dropout(network, 0.5),
128, nonlinearity=leaky_rectify,
W=lasagne.init.Orthogonal())
network = lasagne.layers.DenseLayer(lasagne.layers.dropout(network, 0.5),
10, nonlinearity=softmax)
# create loss function
prediction = lasagne.layers.get_output(network)
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)
loss = loss.mean() + 1e-4 * lasagne.regularization.regularize_network_params(
network, lasagne.regularization.l2)
# create parameter update expressions
params = lasagne.layers.get_all_params(network, trainable=True)
updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=0.01,
momentum=0.9)
# compile training function that updates parameters and returns training loss
train_fn = theano.function([input_var, target_var], loss, updates=updates)
# train network (assuming you've got some training data in numpy arrays)
for epoch in range(100):
loss = 0
for input_batch, target_batch in training_data:
loss += train_fn(input_batch, target_batch)
print("Epoch %d: Loss %g" % (epoch + 1, loss / len(training_data)))
# use trained network for predictions
test_prediction = lasagne.layers.get_output(network, deterministic=True)
predict_fn = theano.function([input_var], T.argmax(test_prediction, axis=1))
print("Predicted class for first test input: %r" % predict_fn(test_data[0]))
For a fully-functional example, see examples/mnist.py, and check the Tutorial for in-depth explanations of the same. More examples, code snippets and reproductions of recent research papers are maintained in the separate Lasagne Recipes repository.
Development
Lasagne is a work in progress, input is welcome.
Please see the Contribution instructions for details on how you can contribute!
Changelog
0.1 (2015-08-13)
First release.
core contributors, in alphabetical order:
Eric Battenberg (@ebattenberg)
Sander Dieleman (@benanne)
Daniel Nouri (@dnouri)
Eben Olson (@ebenolson)
Aäron van den Oord (@avdnoord)
Colin Raffel (@craffel)
Jan Schlüter (@f0k)
Søren Kaae Sønderby (@skaae)
extra contributors, in chronological order:
Daniel Maturana (@dimatura): documentation, cuDNN layers, LRN
Jonas Degrave (@317070): get_all_param_values() fix
Jack Kelly (@JackKelly): help with recurrent layers
Gábor Takács (@takacsg84): support broadcastable parameters in lasagne.updates
Diogo Moitinho de Almeida (@diogo149): MNIST example fixes
Brian McFee (@bmcfee): MaxPool2DLayer fix
Martin Thoma (@MartinThoma): documentation
Jeffrey De Fauw (@JeffreyDF): documentation, ADAM fix
Michael Heilman (@mheilman): NonlinearityLayer, lasagne.random
Gregory Sanders (@instagibbs): documentation fix
Jon Crall (@erotemic): check for non-positive input shapes
Hendrik Weideman (@hjweide): set_all_param_values() test, MaxPool2DCCLayer fix
Kashif Rasul (@kashif): ADAM simplification
Peter de Rivaz (@peterderivaz): documentation fix
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.