Skip to main content

Latent Semantic Analysis package based on "the standard" Latent Semantic Indexing theory.

Project description

Latent Semantic Analysis (LSA) Python package

In brief

This Python package, LatentSemanticAnalyzer, has different functions for computations of Latent Semantic Analysis (LSA) workflows (using Sparse matrix Linear Algebra.) The package mirrors the Mathematica implementation [AAp1]. (There is also a corresponding implementation in R; see [AAp2].)

The package provides:

  • Class LatentSemanticAnalyzer
  • Functions for applying Latent Semantic Indexing (LSI) functions on matrix entries
  • "Data loader" function for obtaining a pandas data frame ~580 abstracts of conference presentations

Installation

To install from GitHub use the shell command:

python -m pip install git+https://github.com/antononcube/Python-packages.git#egg=LatentSemanticAnalyzer\&subdirectory=LatentSemanticAnalyzer

To install from PyPI:

python -m pip install LatentSemanticAnalyzer

LSA workflows

The scope of the package is to facilitate the creation and execution of the workflows encompassed in this flow chart:

LSA-workflows

For more details see the article "A monad for Latent Semantic Analysis workflows", [AA1].


Usage example

Here is an example of a LSA pipeline that:

  1. Ingests a collection of texts
  2. Makes the corresponding document-term matrix using stemming and removing stop words
  3. Extracts 40 topics
  4. Shows a table with the extracted topics
  5. Shows a table with statistical thesaurus entries for selected words
import random
from LatentSemanticAnalyzer.LatentSemanticAnalyzer import *
from LatentSemanticAnalyzer.DataLoaders import *
import snowballstemmer

# Collection of texts
dfAbstracts = load_abstracts_data_frame()
docs = dict(zip(dfAbstracts.ID, dfAbstracts.Abstract))

# Stemmer object (to preprocess words in the pipeline below)
stemmerObj = snowballstemmer.stemmer("english")

# Words to show statistical thesaurus entries for
words = ["notebook", "computational", "function", "neural", "talk", "programming"]

# Reproducible results
random.seed(12)

# LSA pipeline
lsaObj = (LatentSemanticAnalyzer()
          .make_document_term_matrix(docs=docs,
                                     stop_words=True,
                                     stemming_rules=True,
                                     min_length=3)
          .apply_term_weight_functions(global_weight_func="IDF",
                                       local_weight_func="None",
                                       normalizer_func="Cosine")
          .extract_topics(number_of_topics=40, min_number_of_documents_per_term=10, method="NNMF")
          .echo_topics_interpretation(number_of_terms=12, wide_form=True)
          .echo_statistical_thesaurus(terms=stemmerObj.stemWords(words),
                                      wide_form=True,
                                      number_of_nearest_neighbors=12,
                                      method="cosine",
                                      echo_function=lambda x: print(x.to_string())))

Related Python packages

This package is based on the Python package SSparseMatrix, [AAp3]

TBF...


Related Mathematica and R packages

Mathematica

The Python pipeline above corresponds to the following pipeline for the Mathematica package [AAp1]:

lsaObj =
  LSAMonUnit[aAbstracts]
   LSAMonMakeDocumentTermMatrix["StemmingRules" -> Automatic, "StopWords" -> Automatic]
   LSAMonEchoDocumentTermMatrixStatistics["LogBase" -> 10]
   LSAMonApplyTermWeightFunctions["IDF", "None", "Cosine"]
   LSAMonExtractTopics["NumberOfTopics" -> 20, Method -> "NNMF", "MaxSteps" -> 16, "MinNumberOfDocumentsPerTerm" -> 20]
   LSAMonEchoTopicsTable["NumberOfTerms" -> 10]
   LSAMonEchoStatisticalThesaurus["Words" -> Map[WordData[#, "PorterStem"]&, {"notebook", "computational", "function", "neural", "talk", "programming"}]];

R

The package LSAMon-R, [AAp2], implements a software monad for LSA workflows.


References

Articles

[AA1] Anton Antonov, "A monad for Latent Semantic Analysis workflows", (2019), MathematicaForPrediction at WordPress.

Mathematica and R Packages

[AAp1] Anton Antonov, Monadic Latent Semantic Analysis Mathematica package, (2017), MathematicaForPrediction at GitHub.

[AAp2] Anton Antonov, Latent Semantic Analysis Monad in R (2019), R-packages at GitHub/antononcube.

Python packages

[AAp3] Anton Antonov, SSparseMatrix Python package, (2021), PyPI.

[AAp4] Anton Antonov, SparseMatrixRecommender Python package, (2021), PyPI.

[AAp5] Anton Antonov, RandomDataGenerators Python package, (2021), PyPI.

[AAp6] Anton Antonov, RandomMandala Python package, (2021), PyPI.

[MZp1] Marinka Zitnik and Blaz Zupan, Nimfa: A Python Library for Nonnegative Matrix Factorization, (2013-2019), PyPI.

[SDp1] Snowball Developers, SnowballStemmer Python package, (2013-2021), PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

LatentSemanticAnalyzer-0.1.1.tar.gz (188.4 kB view hashes)

Uploaded source

Built Distribution

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page