Skip to main content

Legacy Neural Networks

Project description

Legacy Neural Networks

The Legacy Neural Networks Library is a powerful tool designed to facilitate the development and implementation of neural networks using traditional or legacy approaches. This library provides a comprehensive set of features and functionalities to support the exploration, training, and evaluation of neural network models from earlier generations.

!pip install LegacyNeuralNetworks

Key Features

  • Legacy Network Architectures: The library offers a variety of legacy neural network architectures, including classic feedforward networks, recurrent neural networks (RNNs), convolutional neural networks (CNNs), and more. These architectures serve as the foundation for building and experimenting with neural models based on traditional methodologies.

  • Flexible Configuration: With the Legacy Neural Networks Library, users can easily configure and customize network architectures by specifying the number of layers, types of activation functions, connectivity patterns, and other relevant parameters. This flexibility allows for tailoring the neural networks to specific tasks and datasets.

  • Training and Optimization: The library provides efficient algorithms for training neural networks using classic optimization techniques, such as gradient descent and backpropagation. It includes various optimization strategies and learning rate schedules to enhance convergence and improve network performance.

  • Data Preprocessing: To streamline the data preparation process, the library offers a range of preprocessing utilities. Users can leverage functionalities like data normalization, feature scaling, one-hot encoding, and data augmentation to ensure the input data is properly formatted for training legacy neural networks.

  • Evaluation and Metrics: The Legacy Neural Networks Library enables the evaluation of trained models through comprehensive performance metrics. Users can assess accuracy, precision, recall, F1 score, and other common evaluation measures to gain insights into the network's effectiveness.

  • Integration and Deployment: The library supports integration with existing machine learning ecosystems and frameworks, allowing for seamless interoperability. Models developed using the Legacy Neural Networks Library can be deployed to various environments, including embedded systems, cloud platforms, or edge devices.

Getting Started

To start using the Legacy Neural Networks Library, follow these simple steps:

  1. Install the library by running the package manager command:
!pip install LegacyNeuralNetworks

IMG

from LegacyNeuralNetworks.Fill import Writer
from LegacyNeuralNetworks import ARTNeuralNetwork

write = Writer('output.txt')
print(write.questions) 
write.getCode('descision_region_perceptron')

Choose from

  • activation_function
  • mcculloh_pitt
  • ascii_perceptron
  • descision_region_perceptron
  • recognize_5x3_matrix
  • ann_forward_backward
  • xor_backprop
  • art_network
  • hopfield_network
  • cnn_object_detection
  • cnn_image_classification
  • cnn_tf_implementation
  • mnist_detection

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

LegacyNeuralNetworks-0.1.0.tar.gz (32.7 kB view details)

Uploaded Source

File details

Details for the file LegacyNeuralNetworks-0.1.0.tar.gz.

File metadata

  • Download URL: LegacyNeuralNetworks-0.1.0.tar.gz
  • Upload date:
  • Size: 32.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.1

File hashes

Hashes for LegacyNeuralNetworks-0.1.0.tar.gz
Algorithm Hash digest
SHA256 d8372597c2b7c2a35b0c231d81bc72c6cba496353f85d092237e3078fa09ad14
MD5 2ade8e78150b4de7554d21e38d95877e
BLAKE2b-256 cc660bd7ead074074ec4d24a2d77a42f6abc6f035e4da54b51521492d7c33905

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page