Skip to main content

LevDoom: A Generalization Benchmark for Deep Reinforcement Learning

Project description

LevDoom

LevDoom is a benchmark with difficulty levels based on visual modifications, intended for research in generalization of deep reinforcement learning agents. The benchmark is based upon ViZDoom, a platform addressed to pixel based learning in the FPS game domain.

For more details please refer to our CoG2022 paper. To reproduce the paper results, follow the instructions in the RL module.

Default

Installation

To install LevDoom from PyPi, just run:

$ pip install LevDoom

Alternatively, to install LevDoom from source, clone this repo, cd to it, and then:

  1. Clone the repository
$ git clone https://github.com/TTomilin/LevDoom
  1. Navigate into the repository
$ cd LevDoom
  1. Install the dependencies
$ pip install .

Environments

The benchmark consists of 4 scenarios, each with 5 levels of increasing difficulty. The full list of environments can be found in the LevDoom module.

Scenario Success Metric Enemies Weapon Items Max Steps Actions Stochasticity
Defend the Center Frames Alive 2100 6 Enemy behaviour
Health Gathering Frames Alive 2100 6 Health kit spawn locations
Seek and Slay Kill Count 1250 12 Enemy and agent spawn locations
Dodge Projectiles Frames Alive 2100 6 Enemy behaviour

Environment Modifications

LevDoom imposes generalization difficulty by modifying the base environment of a scenario. Each modification increases the difficulty level of the generalization task. There are 8 types of modifications across all scenarios.

Modification Description
Textures Varies the appearance of the walls, ceilings and floors
Obstacles Adds impassable obstructions to the map that impede the agent's movement
Entity Size Changes the size of enemies and obtainable items
Entity Type Changes the type of enemies and obtainable items
Entity Rendering Varies the rendering type of enemies and obtainable items
Entity Speed Increases the speed of enemies
Agent Height Vertically shifts the view point of the agent

Difficulty Levels

The number of combined modifications determines the difficulty level.

Scenario Level 0 Level 1 Level 2 Level 3 Level 4
Defend the Center Default Gore Stone Wall + Flying Enemies Resized Flying Enemies + Mossy Bricks Complete
Health Gathering Default Resized Kits Stone Wall + Flying Enemies Lava + Supreme + Resized Agent Complete
Seek and Slay Default Shadows Obstacles + Resized Enemies Red + Obstacles + Invulnerable Complete
Dodge Projectiles Default Barons Revenants Flames + Flaming Skulls + Mancubus Complete

Quick Start

LevDoom follows the Gymnasium interface. You can create an environment using the make function:

import levdoom

env = levdoom.make('DefendTheCenterLevel0-v0')

You can also directly create all environments of a level using the make_level function:

import levdoom
from levdoom.utils.enums import Scenario

level_envs = levdoom.make_level(Scenario.DODGE_PROJECTILES, level=3)

Examples

Find examples of using LevDoom environments in the examples folder.

Single Environment

import levdoom

env = levdoom.make('HealthGatheringLevel3_1-v0')
env.reset()
done = False
steps = 0
total_reward = 0
while not done:
    action = env.action_space.sample()
    state, reward, done, truncated, info = env.step(action)
    env.render()
    steps += 1
    total_reward += reward
print(f"Episode finished in {steps} steps. Reward: {total_reward:.2f}")
env.close()

Single Level

import levdoom
from levdoom.utils.enums import Scenario

max_steps = 100
level_envs = levdoom.make_level(Scenario.SEEK_AND_SLAY, level=1, max_steps=max_steps)
for env in level_envs:
    env.reset()
    total_reward = 0
    for i in range(max_steps):
        action = env.action_space.sample()
        state, reward, done, truncated, info = env.step(action)
        env.render()
        total_reward += reward
        if done or truncated:
            break
    print(f"{env.unwrapped.name} finished in {i + 1} steps. Reward: {total_reward:.2f}")
    env.close()

Citation

If you use our work in your research, please cite it as follows:

@inproceedings{tomilin2022levdoom,
  title     = {LevDoom: A Benchmark for Generalization on Level Difficulty in Reinforcement Learning},
  author    = {Tristan Tomilin and Tianhong Dai and Meng Fang and Mykola Pechenizkiy},
  booktitle = {In Proceedings of the IEEE Conference on Games},
  year      = {2022}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

LevDoom-1.0.1.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

LevDoom-1.0.1-py3-none-any.whl (6.1 kB view details)

Uploaded Python 3

File details

Details for the file LevDoom-1.0.1.tar.gz.

File metadata

  • Download URL: LevDoom-1.0.1.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for LevDoom-1.0.1.tar.gz
Algorithm Hash digest
SHA256 e75047327d250b12e249afa3aeafa883a9a3d3a53b75e05c0ad1089ae40a036d
MD5 d4b80275e067643184f1a9d6e9d18e71
BLAKE2b-256 7768bd832784f2f5e0301d6f1541596ebe55419281dba1b500ead05d7454a836

See more details on using hashes here.

File details

Details for the file LevDoom-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: LevDoom-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 6.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for LevDoom-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7ecdd310f166cf8a36f78d52c9e5b4f7bbf33615d3428929252c6873b5dfbb7d
MD5 c916cdf9b546eeb49e6302af5941b567
BLAKE2b-256 628e79cd15f4cb790432fab0be67ee4a25018e4453440c80dc04adbd157c269a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page