Skip to main content

A scikit-learn-compatible module for estimating prediction intervals.

Project description

Travis AppVeyor Codecov CircleCI ReadTheDocs License PythonVersion PyPi

https://github.com/simai-ml/MAPIE/raw/master/doc/images/mapie_logo_nobg_cut.png

MAPIE - Model Agnostic Prediction Interval Estimator

MAPIE allows you to easily estimate prediction intervals using your favourite sklearn-compatible regressor.

🛠 Installation

Install via pip:

pip install mapie

To install directly from the github repository :

pip install git+https://github.com/simai-ml/MAPIE

⚡️ Quickstart

Let us start with a basic regression problem. Here, we generate one-dimensional noisy data that we fit with a linear model.

import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.datasets import make_regression

regressor = LinearRegression()
X, y = make_regression(n_samples=500, n_features=1, noise=20, random_state=59)

Since MAPIE is compliant with the standard scikit-learn API, we follow the standard sequential fit and predict process like any scikit-learn regressor.

from mapie.estimators import MapieRegressor
mapie = MapieRegressor(regressor, method="jackknife_plus")
mapie.fit(X, y)
y_preds = mapie.predict(X)

MAPIE returns a np.ndarray of shape (n_samples, 3) giving the predictions, as well as the lower and upper bounds of the prediction intervals for the target quantile. The estimated prediction intervals can then be plotted as follows.

from matplotlib import pyplot as plt
from mapie.metrics import coverage_score
plt.xlabel('x')
plt.ylabel('y')
plt.scatter(X, y, alpha=0.3)
plt.plot(X, y_preds[:, 0], color='C1')
order = np.argsort(X[:, 0])
plt.fill_between(X[order].ravel(), y_preds[:, 1][order], y_preds[:, 2][order], alpha=0.3)
plt.title(
    f"Target coverage = 0.9; Effective coverage = {coverage_score(y, y_preds[:, 1], y_preds[:, 2])}"
)
plt.show()

The title of the plot compares the target coverage with the effective coverage. The target coverage, or the confidence interval, is the fraction of true labels lying in the prediction intervals that we aim to obtain for a given dataset. It is given by the alpha parameter defined in MapieRegressor, here equal to the default value of 0.1 thus giving a target coverage of 0.9. The effective coverage is the actual fraction of true labels lying in the prediction intervals.

https://github.com/simai-ml/MAPIE/raw/master/doc/images/quickstart_1.png

📘 Documentation

The documentation can be found on this link. It contains the following sections:

📝 Contributing

You are welcome to propose and contribute new ideas. We encourage you to open an issue so that we can align on the work to be done. It is generally a good idea to have a quick discussion before opening a pull request that is potentially out-of-scope. For more information on the contribution process, please go here.

🤝 Affiliations

MAPIE has been developed through a collaboration between Quantmetry, Michelin, and ENS Paris-Saclay with the financial support from Région Ile de France.

Quantmetry Michelin ENS IledeFrance

💬 Citations

MAPIE methods are based on the work by Foygel-Barber et al. (2020).

Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tibshirani. Predictive inference with the jackknife+. Ann. Statist., 49(1):486–507, 022021

📝 License

MAPIE is free and open-source software licensed under the 3-clause BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MAPIE-0.1.4.tar.gz (16.7 kB view details)

Uploaded Source

Built Distribution

MAPIE-0.1.4-py3-none-any.whl (17.4 kB view details)

Uploaded Python 3

File details

Details for the file MAPIE-0.1.4.tar.gz.

File metadata

  • Download URL: MAPIE-0.1.4.tar.gz
  • Upload date:
  • Size: 16.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for MAPIE-0.1.4.tar.gz
Algorithm Hash digest
SHA256 c12045112441e134f513b8929c7e235057b9442d38a45775a0444a585b6b3b02
MD5 b2b6ba07860f1e3fbdee1e6abc9d8277
BLAKE2b-256 1ffd0e15b7b883d488fcdad172ff7e6730d76aba57c6aad71a5e19799ee37d86

See more details on using hashes here.

File details

Details for the file MAPIE-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: MAPIE-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 17.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for MAPIE-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 a3f988fffd75e151a25a2d09bcb4b69b655ff6cb6251a384a924b9c9c0ac24f9
MD5 0b0070189d3d471c6ea951eb74e1f249
BLAKE2b-256 a25eb5079cfaddf7820ac516ca06fb938c7c92a63e70eb8112c4d3533aff437f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page