Skip to main content

MGLEX - MetaGenome Likelihood EXtractor

Project description

This Python Package provides a probabilistic model to classify nucleotide sequences in metagenome samples. It was developed as a framework to help researchers to reconstruct individual genomes from such datasets using custom workflows and to give developers the possibility to integrate the model into their programs.


  • Integrates nucleotide composition, multi-sample coverage and taxonomic annotation

  • Learns a model in linear time with respect to the number of input sequences

  • Classifies novel sequences in linear time

  • Calculates likelihood and p-values

  • Calculates probabilistic distances between genome bins


MGLEX is a Python 3 package, it does not run with Python 2 versions. It depends on

  • NumPy

  • SciPy (for few functions)

  • docopt


Install dependencies with Debian/Ubuntu & Python-Virtualenv

We show how to install MLGEX under Debian and Ubuntu, but other platforms are similar.

You can simply install the requirements as system packages.

sudo apt install python3 python3-numpy python3-scipy

We recommend to create a Python virtual installation enviroment for MGLEX. In order to do so, install the venv package for your Python version (e.g. the Debian package python3.4-venv), if not included (or use virtualenv). The following command will make use of the installed system packages.

python3 -m venv --system-site-packages mglex-env
source mglex-env/bin/activate

Install dependencies with Conda

Similarly, you can use Anaconda or Conda to prepare an environment with the dependencies and activate it.

conda create -n mglex-env -c conda-forge numpy scipy docopt python=3
source activate mglex-env

Install MGLEX Python package

MGLEX is deposited on the Python Package Index and we recommend to install it via pip.

python -m pip install mglex


This package was created using NumPy by Johannes Dröge at the Computational Biology of Infection Research Group at the Helmholtz Centre for Infection Research, Braunschweig, Germany.

Please cite:

Dröge J, Schönhuth A, McHardy AC. (2017) A probabilistic model to recover individual genomes from metagenomes. PeerJ Computer Science 3:e117

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MGLEX-0.2.0.tar.gz (54.3 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page