Skip to main content

A Python package with which users can just drop their dataset and download the best ML model for their dataset

Project description

This package enables you to directly fit the best Machine Learning Model for your dataset by automating all the preprocessing and model fitting steps, Additionally it also performs Exploratory data analysis in the dataset.

Code Snippet: MLOne.Auto_Fit(“datasetâ€, bias_var=False)

Parameter: bias_var: {True, False}(Default: False) Calculates average Bias, Variance and Expected Loss for all the models.

Rules and guide lines for uploading the dataset:

  1. The file should be either .csv or .xlsx
  2. Number of columns : 3 < cols > 100
  3. Number of rows : 200 < rows > 2500
  4. The index col must be the first column.If the dataset doesn't have an index column include it.For example,you can use row number as index.
  5. The dependent variable or the target class should be the last column

Model default settings: chi square Test p val < 0.1

Train Test Validation split ratio ** 70:20:10 SSS No.of folds ** 10

Random search params scores = AUC,precision,accuracy refit criterion = AUC

KNN params: 2 < n_neighbors < 5 metric = euclidean,manhattan,minkowski

Logistic Regression: penalty = l1,none solver = default c = 0.1 geomspace,no.of elements =3

SVC params = {'C' : [1,10,100], 'kernel' : ['rbf', 'linear'], 'gamma' : ['scale', 'auto']}

Random Forest Classifier params = {'n_estimators' : [10,100,200], 'criterion' : ['gini', 'entropy']}

Decision Trees params = {'criterion' : ['gini', 'entropy'], 'splitter' : ['best', 'random']}

Naive Bayes(Gaussian) default parameters

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MLOne-0.0.2.tar.gz (27.6 kB view details)

Uploaded Source

File details

Details for the file MLOne-0.0.2.tar.gz.

File metadata

  • Download URL: MLOne-0.0.2.tar.gz
  • Upload date:
  • Size: 27.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for MLOne-0.0.2.tar.gz
Algorithm Hash digest
SHA256 dec52db13c9e97a82e5613812a34f78526309a00d848ea5ad7e83a4ceda51957
MD5 eb9bbacc759c35d0df5552df4148723b
BLAKE2b-256 83b6cbe42f103cf19c6729435f2f8fbe9a71af625269c9e8978cbf342b749b04

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page