A python package which can help you visually track your training process of machine-learning
Project description
MLSwanlab 用户使用指南
为了帮助您更好地理解如何使用我们的MLSwanlab
库进行模型训练过程中的损失和准确度实时跟踪,这里提供了详细的步骤。
1. 安装 MLSwanlab
首先,您需要安装MLSwanlab
库。可以使用以下命令通过pip
进行安装:
pip install MLSwanlab
2. 导入 Tracker 类
在您的训练代码中,首先需要做的是导入我们提供的Tracker
类。您可以通过以下方式进行:
from MLSwanlab.tracker import Tracker
3. 定义训练函数
在开始训练之前,您需要定义一个训练函数。这是一个典型的训练函数例子:
def my_training_function(epoch):
# 在这里插入您的训练代码
# 根据您的模型和数据计算损失和精度
# 假设我们在这里随机生成一些数据
import random
loss = random.uniform(0, 1)
accuracy = random.uniform(0, 1)
return loss, accuracy
注意: 您的训练函数必须接受一个名为epoch
的参数,并返回两个值:loss
和accuracy
。
4. 实例化和使用 Tracker 类
接下来,您可以实例化Tracker
类,并将您的训练函数作为参数传给它。然后,只需调用track()
方法即可启动训练:
tracker = Tracker(epochs=100, user_training_func=my_training_function)
tracker.track()
在训练开始后,MLSwanlab将会启动一个Flask服务器,实时更新并提供训练的损失和精度数据。
5. 查看实时训练指标
最后,您可以使用任意的web浏览器,访问 http://localhost:5000/metrics 来查看训练的实时指标。
注意: 如果您运行的主机有端口访问限制,您可能需要对您的网络配置进行相应的调整。
这就是所有您需要了解的训练和实时监控训练过程的步骤。如果您遇到任何问题,欢迎提交问题或联系我们。Swanlab团队祝您使用愉快!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file MLSwanlab-0.0.1.tar.gz
.
File metadata
- Download URL: MLSwanlab-0.0.1.tar.gz
- Upload date:
- Size: 4.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 16d5785e8ca0436045a5c6ea2ecce2c87031ea0a95847f37a8ca68b0d99ca5a6 |
|
MD5 | e1e11a3ad08f62a2f014ac01d8e97a1a |
|
BLAKE2b-256 | bfd8cde91ca7e86bc05da06517c78242771b2ad2c28eef487831692717dddc3b |
File details
Details for the file MLSwanlab-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: MLSwanlab-0.0.1-py3-none-any.whl
- Upload date:
- Size: 5.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 535ac9c4a64d8493d0fd39c4cf3f28d2c64a8781896fc6b2d4b89dd097750daa |
|
MD5 | 4a7a9f71bbcdd0195b8f476e55c84e78 |
|
BLAKE2b-256 | ec99823355e92fd565d905ccb3af52d38942f5e5585f9b244fa984e89865e8ed |