Skip to main content

A set of functions and demos to make machine learning projects easier to understand through effective visualizations.

Project description

MLVisualizationTools

Tests Badge Python Version Badge License Badge

MLVisualizationTools is a python library to make machine learning more understandable through the use of effective visualizations.

It supports tensorflow, matplotlib, and plotly, with support for more ml libraries coming soon.

You can use the built in apps to quickly anaylyze your existing models, or build custom projects using the modular sets of functions.

Installation

pip install MLVisualizationTools

Depending on your use case, tensorflow, plotly and matplotlib might need to be installed.

pip install tensorflow pip install plotly pip install matplotlib

To use interactive webapps, use the pip install MLVisualizationTools[dash] or pip install MLVisualizationTools[dash-notebook] flags on install.

If you are running on a kaggle notebook, you might need pip install MLVisualizationTools[kaggle-notebook]

Express

To get started using MLVisualizationTools, run one of the prebuilt apps.

import MLVisualizationTools.express.DashModelVisualizer as App

model = ... #your keras model
data = ... #your pandas dataframe with features

App.visualize(model, data)

Functions

MLVisualizationTools connects a variety of smaller functions.

Steps:

  1. Keras Model and Dataframe with features
  2. Analyzer
  3. Interface / Interface Raw (if you don't have a dataframe)
  4. Colorizers (optional)
  5. Graphs

Analyzers take a keras model and return information about the inputs such as which ones have high variance.

Interfaces take parameters and construct a multidimensional grid of values based on plugging these numbers into the model.

(Raw interfaces allow you to use interfaces by specifying column data instead of a pandas dataframe. Column data is a list with a dict with name, min, max, and mean values for each feature column)

Colorizers mark points as being certain colors, typically above or below 0.5.

Graphs turn these output grids into a visual representation.

Sample

from MLVisualizationTools import Analytics, Interfaces, Graphs, Colorizers

#Displays plotly graphs with max variance inputs to model

model = ... #your model
df = ... #your dataframe
AR = Analytics.Tensorflow(model, df)
maxvar = AR.maxVariance()

grid = Interfaces.TensorflowGrid(model, maxvar[0].name, maxvar[1].name, df)
grid = Colorizers.Binary(grid)
fig = Graphs.PlotlyGrid(grid, maxvar[0].name, maxvar[1].name)
fig.show()

Prebuilt Examples

Prebuilt examples run off of the pretrained model and dataset packaged with this library. They include:

  • Demo: a basic demo of library functionality that renders 2 plots
  • MatplotlibDemo: Demo but with matplotlib instead of plotly
  • DashDemo: Non-jupyter notebook version of an interactive dash website demo
  • DashNotebookDemo: Notebook version of an interactive website demo
  • DashKaggleDemo: Notebook version of an dash demo that works in kaggle notebooks

See MLVisualizationTools/Examples for more examples. Use example.main() to run the examples and set parameters such as themes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MLVisualizationTools-0.2.1rc0.tar.gz (58.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

MLVisualizationTools-0.2.1rc0-py3-none-any.whl (65.6 kB view details)

Uploaded Python 3

File details

Details for the file MLVisualizationTools-0.2.1rc0.tar.gz.

File metadata

  • Download URL: MLVisualizationTools-0.2.1rc0.tar.gz
  • Upload date:
  • Size: 58.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for MLVisualizationTools-0.2.1rc0.tar.gz
Algorithm Hash digest
SHA256 a6c65940816ae227a6b6ada6702933cbe9499cfdf57b0b9707c9ea84c57f2a08
MD5 2df318821c0202079b3e8250f16f60f3
BLAKE2b-256 1286cdd729df97df99406092122c058edba51996a02623bd572b8c95394aa6cc

See more details on using hashes here.

File details

Details for the file MLVisualizationTools-0.2.1rc0-py3-none-any.whl.

File metadata

  • Download URL: MLVisualizationTools-0.2.1rc0-py3-none-any.whl
  • Upload date:
  • Size: 65.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for MLVisualizationTools-0.2.1rc0-py3-none-any.whl
Algorithm Hash digest
SHA256 e11574593442ee5b41d5265c8c4e6e05f1f37463ed505346f7b2b4759c0d316d
MD5 191542b2c2e21edfc6b2281ac0482f79
BLAKE2b-256 58c5eb289410b79cf93342fc93ff6649c129b1a8c45186db74e82e2a068e2cb3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page