Skip to main content

A powerful and user-friendly machine learning toolkit for data science and ML professionals to accelerate their workflow

Project description

MLXpress is a comprehensive and intuitive machine learning toolkit that simplifies the development and deployment of machine learning models. It offers a wide range of essential functionalities for data science and ML professionals, enabling a streamlined and efficient workflow. With MLXpress, you can easily implement commonly used data science and ML functionality, making complex tasks simpler and more accessible.

Key Features:

  • Data Preprocessing: Handle missing values, perform feature scaling, and handle categorical variables.
  • Feature Selection: Select the most relevant features using statistical tests and evaluation metrics.
  • Model Evaluation: Evaluate model performance using various metrics like accuracy, precision, recall, and F1 score.
  • Cross-Validation: Perform cross-validation to assess model generalization and avoid overfitting.
  • Clustering: Apply clustering algorithms for unsupervised learning tasks.
  • Classification: Build and evaluate classification models using popular algorithms like SVM, Random Forest, and Logistic Regression.
  • Regression: Perform regression analysis using linear regression, decision trees, and ensemble methods.
  • Visualization: Visualize data distributions, feature relationships, and model performance metrics.
  • Hypothesis Testing: Perform hypothesis testing to assess statistical significance.

With MLXpress, you can accelerate your machine learning projects, save time on repetitive tasks, and focus on developing accurate and robust models. It provides an intuitive interface, extensive documentation, and comprehensive support, making it suitable for both beginners and experienced practitioners.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

MLXpress-0.1.7-py3-none-any.whl (7.3 kB view details)

Uploaded Python 3

File details

Details for the file MLXpress-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: MLXpress-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 7.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.1

File hashes

Hashes for MLXpress-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 8ba3a6c870635acc33fa4f1e83f2bc7f365e7a719fc8b3d4d4505d400d23995f
MD5 09baf7b42b231ec1c4d7b0c6e1fcc22e
BLAKE2b-256 2980e31eb5b458a9c1e347991edebcba67770ac7288a4af61cdd2f55f7c0d059

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page