Skip to main content

MLZ: Machine Learning for photo-Z, a photometric redshift PDF estimator

Project description

MLZ is a python code that computes photometric redshift PDFs using machine learning techniques, providing optional extra information.

Author:

Matias Carrasco Kind

Version:

1.0

For a more detailed documentation see: http://lcdm.astro.illinois.edu/static/code/mlz/MLZ-1.0/doc/html/index.html

or go to the doc/ folder and start a web browser opening doc/html/index.html

Any comments, suggestion or question contact me at mcarras2@astro.illinois.edu

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MLZ-1.0.tar.gz (12.6 MB view details)

Uploaded Source

File details

Details for the file MLZ-1.0.tar.gz.

File metadata

  • Download URL: MLZ-1.0.tar.gz
  • Upload date:
  • Size: 12.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for MLZ-1.0.tar.gz
Algorithm Hash digest
SHA256 96acdfe7453425d92953ded0c7862b775ee0a1a9362ea92eedcce64203742e17
MD5 64c946176d370fc89686f8bf9e4a7f4b
BLAKE2b-256 25272d19841d8a59504dc189d795c8c05d150497bf34dc6bcb13cb358430e5be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page