Skip to main content

Library used to Normalize numerical time-series data

Project description

Memory Retention Normalization - MRN

This Library is used for normalizing data array with respect to long term memory retention

Timeseries Data's have influence of long term memory retention on their current data

This phenomenon happens in the field of finance sports and other live streaming timeseries datas

Developed by Philip Pankaj (c) 2021

Memory Retention Rate

1 - Retain Max. Memory

0 - Retain Least Memory

Example with Nasdaq 100 data

#importing our MRN
from MRN.scale import Normalization

#importing all required library
from yahoo_fin.stock_info import get_data
from datetime import date

#getting nifty data and converyting to numpy array
now=date.today().strftime("%d/%m/%Y")  
from_date="5/5/2006" # m/d/year
data= get_data("^IXIC", start_date=from_date, end_date=now, index_as_date = True, interval="1d")
data=data['close'].dropna()
data=data.to_numpy()

#initializing MRN and transforming data
mrn=Normalization(data,0.5)
n_data=mrn.transform()

#importing matplotlib and plotting
import matplotlib.pyplot as plt
plt.figure(figsize=(40, 40))

fig, ax1 = plt.subplots()
ax1.set_ylabel('Nasdaq-100')
ax1.plot(data[-1000:], color = 'tab:blue')

ax2=ax1.twinx()
ax2.set_ylabel('MRN-Normalized')
ax2.plot(n_data[-1000:],color='tab:green')
plt.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MRN-0.1.1.tar.gz (3.0 kB view details)

Uploaded Source

Built Distribution

MRN-0.1.1-py3-none-any.whl (2.8 kB view details)

Uploaded Python 3

File details

Details for the file MRN-0.1.1.tar.gz.

File metadata

  • Download URL: MRN-0.1.1.tar.gz
  • Upload date:
  • Size: 3.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for MRN-0.1.1.tar.gz
Algorithm Hash digest
SHA256 43922cce2a6bbfd5ff57d2da70fa74a011d5455fac62b4ba3897b60b9716f6a3
MD5 e0534e341fe5d7058ee6cb53a39b9454
BLAKE2b-256 3efdec5594f347e345884d90d9145fa4aca30570ad406e35e27af43910c90278

See more details on using hashes here.

File details

Details for the file MRN-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: MRN-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 2.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for MRN-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c7787c21cec04c1c5b3f815200f3963dad21c466f7156d86578a17c0e5c33e63
MD5 87d8bfe3a23b431c2fdfb499788012d4
BLAKE2b-256 3b5f6b74f7f5215d7086c3668937f79df96e8774b3dbe4699c635fb68a30e11b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page