Skip to main content

Library used to Normalize numerical time-series data

Project description

Memory Retention Normalization - MRN

This Library is used for normalizing data array with respect to long term memory retention

Timeseries Data's have influence of long term memory retention on their current data

This phenomenon happens in the field of finance sports and other live streaming timeseries datas

Developed by Philip Pankaj (c) 2021

##Example with Nasdaq 100 data

#importing our MRN
from MRN import Normalization

#importing all required library
from yahoo_fin.stock_info import get_data
from datetime import date

#getting nifty data and converyting to numpy array
now=date.today().strftime("%d/%m/%Y")  
from_date="5/5/2006" # m/d/year
data= get_data("^IXIC", start_date=from_date, end_date=now, index_as_date = True, interval="1d")
data=data['close'].dropna()
data=data.to_numpy()

#initializing MRN and transforming data
mrn=Normalization(data,0.5)
n_data=mrn.transform()

#importing matplotlib and plotting
import matplotlib.pyplot as plt
plt.figure(figsize=(40, 40))

fig, ax1 = plt.subplots()
ax1.set_ylabel('Nasdaq-100')
ax1.plot(data[-1000:], color = 'tab:blue')

ax2=ax1.twinx()
ax2.set_ylabel('MRN-Normalized')
ax2.plot(n_data[-1000:],color='tab:green')
plt.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MRN-0.0.6.tar.gz (2.9 kB view details)

Uploaded Source

Built Distribution

MRN-0.0.6-py3-none-any.whl (2.8 kB view details)

Uploaded Python 3

File details

Details for the file MRN-0.0.6.tar.gz.

File metadata

  • Download URL: MRN-0.0.6.tar.gz
  • Upload date:
  • Size: 2.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for MRN-0.0.6.tar.gz
Algorithm Hash digest
SHA256 fffeab1bf8f34115c8bcf3114e6cbc12651a2dee94c106d4ee7c3c286aa8f735
MD5 b89977d9503653f23d0d8838be4d52e7
BLAKE2b-256 681d53d6a5c484923c5f4d3b5008d4b1bd36c1ebccbb983c4bbc293f5ae235ed

See more details on using hashes here.

File details

Details for the file MRN-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: MRN-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 2.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for MRN-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 37cfce439f2458ffc9e43d5cf363139eef3927a4daa15981fb444f1028bf8094
MD5 0463d5ab667e9e5c38a2a25a295e3d2e
BLAKE2b-256 ccb0f5e5baf59a56ee9a73e4e026f9b36769224ac9884c55e03d201aa239f1d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page