Skip to main content

Library used to Normalize numerical time-series data

Project description

Memory Retention Normalization - MRN

This Library is used for normalizing data array with respect to long term memory retention

Timeseries Data's have influence of long term memory retention on their current data

This phenomenon happens in the field of finance sports and other live streaming timeseries datas

Developed by Philip Pankaj (c) 2021

##Example with Nasdaq 100 data

#importing our MRN
from MRN.scale import Normalization

#importing all required library
from yahoo_fin.stock_info import get_data
from datetime import date

#getting nifty data and converyting to numpy array
now=date.today().strftime("%d/%m/%Y")  
from_date="5/5/2006" # m/d/year
data= get_data("^IXIC", start_date=from_date, end_date=now, index_as_date = True, interval="1d")
data=data['close'].dropna()
data=data.to_numpy()

#initializing MRN and transforming data
mrn=Normalization(data,0.5)
n_data=mrn.transform()

#importing matplotlib and plotting
import matplotlib.pyplot as plt
plt.figure(figsize=(40, 40))

fig, ax1 = plt.subplots()
ax1.set_ylabel('Nasdaq-100')
ax1.plot(data[-1000:], color = 'tab:blue')

ax2=ax1.twinx()
ax2.set_ylabel('MRN-Normalized')
ax2.plot(n_data[-1000:],color='tab:green')
plt.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MRN-0.1.0.tar.gz (2.9 kB view details)

Uploaded Source

Built Distribution

MRN-0.1.0-py3-none-any.whl (2.8 kB view details)

Uploaded Python 3

File details

Details for the file MRN-0.1.0.tar.gz.

File metadata

  • Download URL: MRN-0.1.0.tar.gz
  • Upload date:
  • Size: 2.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for MRN-0.1.0.tar.gz
Algorithm Hash digest
SHA256 fced9d64965a97198484e75cdd7b56549fefff45c66fc9edbfd872f8dbd0646d
MD5 20234d5a750ec8e0f412f597dbdd2bc5
BLAKE2b-256 dbe35bbe9c262eca680a24606205f298523237f3956b9c1896d4c195c961bfdc

See more details on using hashes here.

File details

Details for the file MRN-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: MRN-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 2.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for MRN-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e19d6953d68e6a67f34fb78a6d5258a7d101d30cdef02e12f9821afaee292a0f
MD5 7719d5f476a1178c8680e397cda3346a
BLAKE2b-256 d34eadcaf99b3a8b0cd5e13bf33fb5af1e02843962a38dabf425c15dc6e5e329

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page