Skip to main content

Python package for heuristic optimization

Project description

Mean Variance Mapping Optimization Algorithm

MVMO is a Python package to perform heuristic optimization on constrained and unconsrained optimization problems whose convexity and/or linearity may not be fully known. It is based on swarm optimization principles, and uses a continuously updated mean and variance of best solutions from optimization process. Note: since this is a heuristic algorithm, it does not provide the optimal solution, but near optimal solution. This is however done in a very quick time compared to traditional optimization solvers.

Installation

MVMO can be installed from PyPI using:

pip install MVMO

MVMO requires numpy and pandas to work.

Usage

Initialisation

The MVMO optimizer can be called with arguments iterations, num_mutation, and population_size. This defines key parameters for MVMO.

Defining objective function

MVMO by default optimizes the objective function for minimum. For maximisation, the objective function will need to be modified. Objective functions can be defined by the user as per requirement. This is shown in examples. The MVMO package provides the following test function benchmarks from Wikipedia:

  1. Rosenbrock
  2. Matyas
  3. Booth
  4. Himm
  5. Easom

Constraint definition

Constraints can be inequality or equality. The constraints are passed as a dictionary object with keywords ineq, eq, or func to symbolise whether the specified constraint is inequality, equality or a function definition. Inequality and equality contraints are specified in str format, and must follow the convention:

g(x) <= 0   #inequality constraint
h(x) = 0    #equality constraint

Complex constraints can also be defined as python functions. An example of how to use the MVMO package for constrained optimization is shown later. It uses all three constraint defintions.

Binary and Integer variables

MVMO also provides the ablity to define binary and integer variables in optimization decision easily. This can be done by specifying the index of the variables with binary or integer keyword in the optimize function. This is shown in the example later.

Optimization

The optimize() method can be called on the optimizer to perform optimization. It returns a res dictioanry object upon the completion of optimization. This contains:

  1. objective: Provides best objective function value, and where it was obtained.
  2. x: The optimized decision vector
  3. convergence: Provides the list of objective function values over optimization process. This can beused to plot convergence graph.
  4. register: A pandas dataframe of the size of population_size which contains best saved objective function values and X vectors.
  5. metrics: Provides the internal mean and variance of stored solutions that was used for optimization.
  6. scaling_factors" provides a list of scaling factors used over the iterations.

The convergence graph can be plotted with MVMO.plot(res['convergence']).

The following example shows minimization of constrained Rosenbrock function:

from MVMO import MVMO
from MVMO import test_functions
function = test_functions.rosen
optimizer = MVMO(iterations=5000, num_mutation=1, population_size=10)

def func_constr(X):
	return True if X[0]**2 + X[1]**2 < 1 else False

bds = [(0,1.5), (1,3.5)]
constr = {'ineq':"(X[0] - 1)**3 - X[1] + 1",
		  'eq':"X[0]+X[1]-2",
		  'func':func_constr}
res = optimizer.optimize(obj_fun=function, bounds=bds, constraints=constr, binary=[0], integer=[1])

print(res['x')

MVMO.plot(res['convergence'])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MVMO-1.1.0.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

MVMO-1.1.0-py3-none-any.whl (7.0 kB view details)

Uploaded Python 3

File details

Details for the file MVMO-1.1.0.tar.gz.

File metadata

  • Download URL: MVMO-1.1.0.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for MVMO-1.1.0.tar.gz
Algorithm Hash digest
SHA256 6cbaeb532bf9b98d752e8bb5d8f06b2e3e26bffe4b2ecb60f1360427a8b23d02
MD5 9f2a091c84b119a81e4911b9d70439cf
BLAKE2b-256 2beeb4bee427d156e8f6062a6a0b33a1a2891d29dad4940868d711c02e482e5b

See more details on using hashes here.

File details

Details for the file MVMO-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: MVMO-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 7.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for MVMO-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b33ed9592549716029989e1456d4827de263c7966996bcf3348bcd761b6313b9
MD5 2589372d130ffbdeee8c0bd9849cf6ef
BLAKE2b-256 02b4839e750b490fb5aeb06e7201ec883bc8a4f4134afa5442e859c488823a0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page