Skip to main content

Detection of fruits disease by using Machine learning

Project description

MahaPala

Detection of fruits disease by using Machine learning

Indentification Of Fruits

Create class to indentify the fruit names tested it for Guava & Mango fruits

  • Deep learning algorithm
  • adam optimizer
  • relu activation

Reference

Model: sequential

_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 rescaling (Rescaling)       (None, 224, 224, 3)       0         
                                                                 
 conv2d (Conv2D)             (None, 224, 224, 16)      448       
                                                                 
 max_pooling2d (MaxPooling2  (None, 112, 112, 16)      0         
 D)                                                              
                                                                 
 conv2d_1 (Conv2D)           (None, 112, 112, 32)      4640      
                                                                 
 max_pooling2d_1 (MaxPoolin  (None, 56, 56, 32)        0         
 g2D)                                                            
                                                                 
 conv2d_2 (Conv2D)           (None, 56, 56, 64)        18496     
                                                                 
 max_pooling2d_2 (MaxPoolin  (None, 28, 28, 64)        0         
 g2D)                                                            
                                                                 
 flatten (Flatten)           (None, 50176)             0         
                                                                 
 dense (Dense)               (None, 128)               6422656   
                                                                 
 dense_1 (Dense)             (None, 5)                 645       
                                                                 
=================================================================
Total params: 6446885 (24.59 MB)
Trainable params: 6446885 (24.59 MB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

Dashboard

image

Release Note

2023.12.16

  • #9 Create a sample to identify the fruits name
  • #11 Implement visualization dashboard

2021.11.01

  • #9 Create a sample to identify the fruits name

2020.11.01.dev

  • Initial setup and environments
  • Added a templete matching algorithm

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MahaPala-2023.12.16.tar.gz (4.2 kB view details)

Uploaded Source

Built Distribution

MahaPala-2023.12.16-py3-none-any.whl (4.6 kB view details)

Uploaded Python 3

File details

Details for the file MahaPala-2023.12.16.tar.gz.

File metadata

  • Download URL: MahaPala-2023.12.16.tar.gz
  • Upload date:
  • Size: 4.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for MahaPala-2023.12.16.tar.gz
Algorithm Hash digest
SHA256 23274a29540d3c716516ed3d23d0791d55228ec65cd47ae3d8e27470ce40d2c8
MD5 15283f0764f3bd79eb2e3ecdfb2de550
BLAKE2b-256 39cb0c049b1869ec9b4833413d57f6a4685c4d53eabc42a5a74ff67919ed7549

See more details on using hashes here.

File details

Details for the file MahaPala-2023.12.16-py3-none-any.whl.

File metadata

File hashes

Hashes for MahaPala-2023.12.16-py3-none-any.whl
Algorithm Hash digest
SHA256 3c1cd5980d9469cf45027a8e5535f11f83a354af9a09b2aad1c4aa30a019d47e
MD5 4e9c68c30490ac1b56cd48a0d07601d9
BLAKE2b-256 0d27f8ee23f7dd6b3e9509e4ed72d81b6627de3bdd2d9a58fdc0e1d136a855b7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page