Skip to main content

Sqlite3 based powerful database project.

Project description

MentoDB

Sqlite3 based powerful database project.

Requirements:

  • Python 3.9.6 or greater version

  • pydantic -> pip install pydantic

  • pandas -> pip install pandas

  • numpy -> pip install numpy

  • Import these two module before start:

from pydantic import BaseModel
from pydantic.dataclasses import dataclass

Working with Base Models

The following code demonstrates how to work with base models in Python using pydantic and dataclasses.

Creating a Model Extended from Base Model

The following code creates a model named MyModel that extends from BaseModel:

@dataclass
class MyModel(BaseModel):
    id: int
    name: str
    job: str
    price: int

Creating a SQL Table with a Model

Here's an example of how to create a SQL table with the MyModel model:

# Initialize a connection with MentoConnection (similar to "sqlite3.Connection")
con = MentoConnection("./database/new.db", check_same_thread=False)

# Create a database cursor with the connection object.
cursor = Mento(con)

# Create a table with the following structure: (id int, name text, job text, price int)
cursor.create("sample_table", model=MyModel)

Using Primary Key and Unique Column Matches When Creating Tables

Primary Key:

@dataclass
class PrimaryKeySample(BaseModel):
    id: PrimaryKey(int)
    name: str
    age: int
    price: int

# Create a table with the following structure: (id int primary key, name text, age int, price int)
cursor.create("primary_sample", model=PrimaryKeySample)

Unique Matches:

@dataclass
class Sample(BaseModel):
    id: PrimaryKey(int)
    name: str
    age: int
    price: int
    check_match: UniqueMatch("id", "name")

# Create a table with unique match control.
cursor.create("unique_matches_sample", model=Sample)

# Set the check_model parameter to check if there are matches.
# If the table has matched data, the insert process will be stopped.
cursor.check_model = Sample

Data Statements

Create

  • Create a table if it does not already exist:
cursor.create("sample", model=Sample)
  • Create a table without checking if it already exists:
cursor.create("sample", model=Sample, exists_check=False)
  • Create multiple tables:
cursor.create_many(dict(first=MyModel, second=PrimaryKeySample, third=Sample))

Insert

cursor.insert(
    "sample",
    data=dict(id=1, name="fswair", age=18, price=4250),
    # If your model has a UniqueMatch control and you want to check matches, set the model with the check_model keyword argument.
    check_model=Sample
    )

Select

  • Return all rows as a list of dictionaries:
cursor.select("sample")
# Output: [{id: 1, name: fswair, age: 18, price: 4250}]

SELECT

The following are the different methods for returning data from the table using the select statement in the cursor object:

  • cursor.select("sample"): Returns all rows as list[dict] -> [{id: 1, name: fswair, age: 18, price: 4250}]

  • cursor.select("sample", where={"id": 1, "name": "fswair"}): Returns all rows matched with the where condition. The condition looks like (in SQL): SELECT * FROM TABLE WHERE id = 1 AND name = 'fswair'.

  • cursor.select("sample", where={"id": 1, "name": "fswair"}, order_by="id"): Returns all rows matched with the where condition sorted as ORDER BY. The condition looks like (in SQL): SELECT * FROM TABLE WHERE id = 1 AND name = 'fswair' ORDER BY id.

  • cursor.select("sample", select_column="id"): Returns all row's id columns as list[dict] -> [{id: 1}, {id: 2}]

  • cursor.select("sample", filter=lambda id: id % 3 == 0): Returns all rows matched with the lambda filter (lambda arg must be column name). Example output: list[dict] -> [{id: 3, name: fswair, age: 18, price: 4250}].

  • cursor.select("sample", regexp={"id": ["\d{1,3}"]}): Returns all rows matched with regexp patterns (regexp dict must be one key as column name, value could be pattern or list of patterns). Example output: list[dict] -> [{id: 999, name: fswair, age: 18, price: 4250}].

Response Formatters for Select Statement

The following are the response formatters for the select statement:

  • cursor.select("table", as_json=True): Returns data as JSON.

  • cursor.select("table", as_dataframe=True): Returns data as a DataFrame (using Pandas).

  • cursor.select("table", as_dataframe=True).to_csv(): Returns data as a CSV file.

  • cursor.select("table", model=Sample, as_model=True): Returns object list (accessible with attributes).

UPDATE

The following updates the data matched with the where condition:

cursor.update(
    "sample",
    set_data=dict(name="fswair-up", age=20),
    where={"id": 1, "name": "fswair"}
    )

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MentoDB-2.1.0.tar.gz (9.9 kB view details)

Uploaded Source

File details

Details for the file MentoDB-2.1.0.tar.gz.

File metadata

  • Download URL: MentoDB-2.1.0.tar.gz
  • Upload date:
  • Size: 9.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.5

File hashes

Hashes for MentoDB-2.1.0.tar.gz
Algorithm Hash digest
SHA256 e273d1552cef8f45f4bf96bbcc2b7f6b1546db134553fcbbfdb3e1eeb0b8afbc
MD5 2d3bfee2f3beb1f6b5308cfed911d515
BLAKE2b-256 a25988fa4d6ea9e979e5a079695b3413fd710312ddd6a28f9abefd8be1738845

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page