Skip to main content

Tools for documentation-aware data reading, writing, and analysis

Project description

=======
MetaCSV
=======


.. image:: https://travis-ci.org/delgadom/metacsv.png?branch=master
:target: https://travis-ci.org/delgadom/metacsv

.. image:: https://badge.fury.io/py/metacsv.png
:target: http://badge.fury.io/py/metacsv

.. image:: https://coveralls.io/repos/github/delgadom/metacsv/badge.png?branch=master :target: https://coveralls.io/github/delgadom/metacsv?branch=master

.. image:: https://pypip.in/d/metacsv/badge.png
:target: https://crate.io/packages/metacsv?version=latest


``metacsv`` - Tools for documentation-aware data reading, writing, and analysis

See the full documentation at ReadTheDocs_

.. _ReadTheDocs: http://metacsv.rtfd.org

Features
=========

Read in CSV data with a yaml-compliant header directly into
a ``pandas`` ``Series``, ``DataFrame``, or ``Panel`` or an ``xarray``
``DataArray`` or ``Dataset``.

Data specification
----------------------------

Data can be specified using a yaml-formatted header, with the doc-separation string
above and below the yaml block. Only one yaml block is allowed. If the doc-separation
string is not the first (non-whitespace) line in the file, all of the file's contents
will be interpreted by the csv reader. The yaml data can have arbitrary complexity.

.. code-block:: python

>>> import metacsv, io
>>> doc = io.StringIO('''
---
author: A Person
date: 2000-01-01
variables:
pop: {name: Population, unit: millions}
gdp: {name: Product, unit: 2005 $Bn}
coords:
region: !!null
regname: region
year: !!null
---
region,regname,year,pop,gdp
USA,United States,2010,309.3,13599.3
USA,United States,2011,311.7,13817.0
CAN,Canada,2010,34.0,1240.0
CAN,Canada,2011,34.3,1276.7
''')


Using MetaCSV-formatted files in python
--------------------------------------------

Read MetaCSV-formatted data into python using pandas-like syntax:

.. code-block:: python

>>> df = metacsv.read_csv(doc, index_col=[0,1,2])
>>> df
<metacsv.core.containers.DataFrame (4, 2)>
pop gdp
region regname year
USA United States 2010 309.3 13599.3
2011 311.7 13817.0
CAN Canada 2010 34.0 1240.0
2011 34.3 1276.7

Coordinates
* region (region) object CAN, USA
* year (year) int64 2010, 2011
regname (region) object Canada...
Variables
pop
gdp
Attributes
date: 2000-01-01
author: A Person

Exporting MetaCSV data to other formats
-----------------------------------------------

pandas
~~~~~~~~~~~~~~~

The coordinates and MetaCSV attributes can be easily stripped from a MetaCSV Container:

.. code-block:: python

>>> df.to_pandas()
pop gdp
region regname year
USA United States 2010 309.3 13599.3
2011 311.7 13817.0
CAN Canada 2010 34.0 1240.0
2011 34.3 1276.7



xarray/netCDF
~~~~~~~~~~~~~~~

.. code-block:: python

>>> ds = df.to_xarray()
>>> ds
<xarray.Dataset>
Dimensions: (region: 2, year: 2)
Coordinates:
* region (region) object 'USA' 'CAN'
* year (year) int64 2010 2011
regname (region) object 'United States' 'Canada'
Data variables:
pop (region, year) float64 309.3 311.7 34.0 34.3
gdp (region, year) float64 1.36e+04 1.382e+04 1.24e+03 1.277e+03
Attributes:
date: 2000-01-01
author: A Person
>>> ds.to_netcdf('my_data_netcdf.nc')

Currently, MetaCSV only supports conversion back to CSV and to
netCDF through the ``xarray`` module. However, feel free to suggest
additional features and to contribute your own!


TODO
============

* Make ``coords`` and ``attrs`` persistent across slicing operations
(try ``df['pop'].to_xarray()`` from above example and watch it
fail...)
* Improve hooks between ``pandas`` and ``metacsv``:
- update ``coord`` names on ``df.index.names`` assignment
- update ``coords`` on stack/unstack
- update ``coords`` on
* Handle attributes indexed by coord/variable names --> assign to
coord/variable-specific ``attrs``
* Let's start an issue tracker and get rid of this section!
* Should we rethink "special attributes," e.g. coords? Maybe these should
have some special prefix like ``_coords`` when included in yaml headers to
avoid confusion with other generic attributes...
* Write tests
* Write documentation




============== ==========================================================
Python support Python 2.7, >= 3.3
Source https://github.com/delgadom/metacsv
Docs http://metacsv.rtfd.org
Changelog http://metacsv.readthedocs.org/en/latest/history.html
API http://metacsv.readthedocs.org/en/latest/api.html
Issues https://github.com/delgadom/metacsv/issues
Travis http://travis-ci.org/delgadom/metacsv
Test coverage https://coveralls.io/r/delgadom/metacsv
pypi https://pypi.python.org/pypi/metacsv
Ohloh https://www.ohloh.net/p/metacsv
License `BSD`_.
git repo .. code-block:: bash

$ git clone https://github.com/delgadom/metacsv.git
install dev .. code-block:: bash

$ git clone https://github.com/delgadom/metacsv.git metacsv
$ cd ./metacsv
$ virtualenv .env
$ source .env/bin/activate
$ pip install -e .
tests .. code-block:: bash

$ python setup.py test
============== ==========================================================

.. _BSD: http://opensource.org/licenses/BSD-3-Clause
.. _Documentation: http://metacsv.readthedocs.org/en/latest/
.. _API: http://metacsv.readthedocs.org/en/latest/api.html


=========
Changelog
=========

Here you can find the recent changes to MetaCSV..

.. changelog::
:version: dev
:released: Ongoing

.. change::
:tags: docs

Updated CHANGES.

.. changelog::
:version: 0.0.1
:released: 2016-05-04

.. change::
:tags: project

First release on PyPi.

.. todo:: vim: set filetype=rst:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

MetaCSV-0.0.1-py3-none-any.whl (17.4 kB view details)

Uploaded Python 3

MetaCSV-0.0.1-py2-none-any.whl (17.4 kB view details)

Uploaded Python 2

File details

Details for the file MetaCSV-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for MetaCSV-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 70ef40ad4caa426a198c9d39e3f8e82960f1cce8ded49207067819d6c6abadc5
MD5 ac59e10fb3d9c73a5d3f808b49b32137
BLAKE2b-256 9d7b473ed4fc341921a84b2bb30795f42f6c22f52bb59599201a5460948d4436

See more details on using hashes here.

File details

Details for the file MetaCSV-0.0.1-py2-none-any.whl.

File metadata

File hashes

Hashes for MetaCSV-0.0.1-py2-none-any.whl
Algorithm Hash digest
SHA256 fccf1eb5639495e0cf0fec731bd603274e603e80d0e8aec41b9a9cf7b15020e1
MD5 a3b342188d9186e3713ab9377ac10c88
BLAKE2b-256 550082dec6963562409e3297f33d22dec3bf28cfe11ba95f6b7c772836357827

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page