MicroInverse is a Python package for inversion of a transport operator from tracer data.
Project description
============
MicroInverse
============
.. image:: https://img.shields.io/pypi/v/MicroInverse.svg
:target: https://pypi.python.org/pypi/MicroInverse
.. image:: https://img.shields.io/travis/AleksiNummelin/MicroInverse.svg
:target: https://travis-ci.org/AleksiNummelin/MicroInverse
.. image:: https://readthedocs.org/projects/MicroInverse/badge/?version=latest
:target: https://MicroInverse.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
MicroInverse is a Python package for inversion of a transport operator from tracer data.
It is based on the simple stochastic climate model approximation
.. image:: http://latex.codecogs.com/gif.latex?%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cmathbf%7Bx%7D%28t%29%20%3D%20%5Cmathbf%7BB%7D%5Cmathbf%7Bx%7D%28t%29%20+%20%5Cmathbf%7Bf%7D%28t%29
Where **x** is the vector of tracer anomaly timeseries, **B** is the transport operator, and **f** is
the forcing of the system. Assuming that the forcing has a shorter decorrelation timescale than
the tracer we can solve for the transport operator:
.. image:: http://latex.codecogs.com/gif.latex?%5Cmathbf%7BB%7D%3D%5Cfrac%7B1%7D%7B%5Ctau%7D%5Clog%20%5Cleft%28%5Cleft%5B%20%5Cmathbf%7Bx%7D%28t+%5Ctau%29%5Cmathbf%7Bx%7D%5ET%28t%29%5Cright%20%5D%20%5C%20%5Cleft%5B%5Cmathbf%7Bx%7D%28t%29%5Cmathbf%7Bx%7D%5ET%28t%29%20%5Cright%5D%5E%7B-1%7D%5Cright%29
Where tau is the chosen decorrelation timescale which should be larger than the forcing decorrelation timescale,
but smaller than the decorrelation timescale of the tracer.
In practice tau is hard to choose a priori which is why we suggest first inverting your data at multiple values
of tau and combining the results afterwards using MicroInverse.MicroInverse_utils.combine_Taus().
MicroInverse will also relate **B** to velocity, diffusivity, and decay via advection-diffusion-relaxation equation (see `Nummelin et al. (2018)`__ for details)
* Free software: MIT license
* Documentation: https://MicroInverse.readthedocs.io.
Features
--------
* TODO
Credits
-------
This package is based on work by `Nummelin et al. (2018)`_ and Jeffress and Haine (2014a_, 2014b_)
.. _Nummelin et al. (2018): http://pages.jh.edu/~anummel1/
.. _2014a: https://doi.org/10.1002/qj.2313
.. _2014b: https://doi.org/10.1088/1367-2630/16/10/105001
This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.
.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage
=======
History
=======
0.1.0 (2018-04-03)
------------------
* First release on PyPI.
MicroInverse
============
.. image:: https://img.shields.io/pypi/v/MicroInverse.svg
:target: https://pypi.python.org/pypi/MicroInverse
.. image:: https://img.shields.io/travis/AleksiNummelin/MicroInverse.svg
:target: https://travis-ci.org/AleksiNummelin/MicroInverse
.. image:: https://readthedocs.org/projects/MicroInverse/badge/?version=latest
:target: https://MicroInverse.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
MicroInverse is a Python package for inversion of a transport operator from tracer data.
It is based on the simple stochastic climate model approximation
.. image:: http://latex.codecogs.com/gif.latex?%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cmathbf%7Bx%7D%28t%29%20%3D%20%5Cmathbf%7BB%7D%5Cmathbf%7Bx%7D%28t%29%20+%20%5Cmathbf%7Bf%7D%28t%29
Where **x** is the vector of tracer anomaly timeseries, **B** is the transport operator, and **f** is
the forcing of the system. Assuming that the forcing has a shorter decorrelation timescale than
the tracer we can solve for the transport operator:
.. image:: http://latex.codecogs.com/gif.latex?%5Cmathbf%7BB%7D%3D%5Cfrac%7B1%7D%7B%5Ctau%7D%5Clog%20%5Cleft%28%5Cleft%5B%20%5Cmathbf%7Bx%7D%28t+%5Ctau%29%5Cmathbf%7Bx%7D%5ET%28t%29%5Cright%20%5D%20%5C%20%5Cleft%5B%5Cmathbf%7Bx%7D%28t%29%5Cmathbf%7Bx%7D%5ET%28t%29%20%5Cright%5D%5E%7B-1%7D%5Cright%29
Where tau is the chosen decorrelation timescale which should be larger than the forcing decorrelation timescale,
but smaller than the decorrelation timescale of the tracer.
In practice tau is hard to choose a priori which is why we suggest first inverting your data at multiple values
of tau and combining the results afterwards using MicroInverse.MicroInverse_utils.combine_Taus().
MicroInverse will also relate **B** to velocity, diffusivity, and decay via advection-diffusion-relaxation equation (see `Nummelin et al. (2018)`__ for details)
* Free software: MIT license
* Documentation: https://MicroInverse.readthedocs.io.
Features
--------
* TODO
Credits
-------
This package is based on work by `Nummelin et al. (2018)`_ and Jeffress and Haine (2014a_, 2014b_)
.. _Nummelin et al. (2018): http://pages.jh.edu/~anummel1/
.. _2014a: https://doi.org/10.1002/qj.2313
.. _2014b: https://doi.org/10.1088/1367-2630/16/10/105001
This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.
.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage
=======
History
=======
0.1.0 (2018-04-03)
------------------
* First release on PyPI.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
MicroInverse-0.2.0.tar.gz
(28.2 kB
view details)
Built Distribution
File details
Details for the file MicroInverse-0.2.0.tar.gz
.
File metadata
- Download URL: MicroInverse-0.2.0.tar.gz
- Upload date:
- Size: 28.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fd7c8e981d6618887ed42c101a93b12970f51cc11ee42d556bf2d0eb2e112e67 |
|
MD5 | 59b7b951b428588026c3a165a122f9e9 |
|
BLAKE2b-256 | c551fc9458c148948cfcf3e1bfb8e7fec43da1c9ec259e02fe63c6b3a5bcbfd5 |
File details
Details for the file MicroInverse-0.2.0-py2.py3-none-any.whl
.
File metadata
- Download URL: MicroInverse-0.2.0-py2.py3-none-any.whl
- Upload date:
- Size: 17.6 MB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ca6f5f15bbd164e9fa9f5b5d12fca29bfc93bef253bffa4360ae11137546c518 |
|
MD5 | 41eba9e8994ab3bb4017a8b29a789ba6 |
|
BLAKE2b-256 | 4d893b955f37b511415d8d5b7bb78b4d3b4e1c3730f8aaeb64f50ac26fbf2a0b |