Skip to main content

Best imputation method.

Project description

MissForest

This project is a Python implementation of the MissForest algorithm, a powerful tool designed to handle missing values in tabular datasets. The primary goal of this project is to provide users with a more accurate method of imputing missing data.

While MissForest may take more time to process datasets compared to simpler imputation methods, it typically yields more accurate results.

Please note that the efficiency of MissForest is a trade-off for its accuracy. It is designed for those who prioritize data accuracy over processing speed. This makes it an excellent choice for projects where the quality of data is paramount.

How MissForest Handles Categorical Variables ?

Categorical variables in argument 'categoricals' will be label encoded for estimators to work properly.

Example

To install MissForest using pip.

pip install MissForest

Imputing a dataset:

from missforest.missforest import MissForest
import pandas as pd
import numpy as np


if __name__ == "__main__":
    df = pd.read_csv("insurance.csv")

    # default estimators are lgbm classifier and regressor
    mf = MissForest()
    mf.fit(
        X=train,
        categorical=["sex", "smoker", "region"]
    )
    train_imputed = mf.transform(X=train)
    test_imputed = mf.transform(X=test)
    print(test_imputed)

    # or using the 'fit_transform' method
    mf = MissForest()
    train_imputed = mf.fit_transform(
        X=train,
        categorical=["sex", "smoker", "region"]
    )
    test_imputed = mf.transform(X=test)
    print(test_imputed)

Imputing with other estimators

from missforest.missforest import MissForest
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier


if __name__ == "__main__":
    df = pd.read_csv("insurance.csv")
    df_or = df.copy()
    for c in df.columns:
        random_index = np.random.choice(df.index, size=100)
        df.loc[random_index, c] = np.nan

clf = RandomForestClassifier(n_jobs=-1)
rgr = RandomForestRegressor(n_jobs=-1)

mf = MissForest(clf, rgr)
df_imputed = mf.fit_transform(df)

Benchmark

            Mean Absolute Percentage Error
           missForest | mean/mode | Difference
 charges        2.65%       9.72%       -7.07%
     age        1.16%       2.77%       -1.61%
     bmi        1.18%       1.25%       -0.07%
     sex        21.21       31.82       -10.61
  smoker         4.24        9.90        -5.66
  region        46.67       38.96        +7.71

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MissForest-2.4.2.tar.gz (9.5 kB view details)

Uploaded Source

Built Distribution

MissForest-2.4.2-py3-none-any.whl (7.6 kB view details)

Uploaded Python 3

File details

Details for the file MissForest-2.4.2.tar.gz.

File metadata

  • Download URL: MissForest-2.4.2.tar.gz
  • Upload date:
  • Size: 9.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for MissForest-2.4.2.tar.gz
Algorithm Hash digest
SHA256 b549b5d0f32d3fed5f720672b3d3a03a1f6470c671fc5301f7c759d2c1969269
MD5 5339b9bb1d1733dc4131a23812c59a22
BLAKE2b-256 445ef055273101fee9a832f965ba08167287b7b6821fd1f4170d82d2c2facde3

See more details on using hashes here.

File details

Details for the file MissForest-2.4.2-py3-none-any.whl.

File metadata

  • Download URL: MissForest-2.4.2-py3-none-any.whl
  • Upload date:
  • Size: 7.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for MissForest-2.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 22885a38d3387426ee949e1d243fff51de440955cf1a8ed64fe20308bfdcacc8
MD5 4c193a6cb155246843dd18d16ab5b3f7
BLAKE2b-256 6cb6df665a6f2035d35ad38522cf791eb5735d455d91d3ab7162f3a2b605aab4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page