Skip to main content

Distributions & Timer for Non-deterministic Value Generators

Project description

MonkeyScope

Distribution Tests & Performance Timer for Non-deterministic Functions

Sister Project:

Quick Install $ pip install MonkeyScope

Installation may require the following:

  • Python 3.7 or later with dev tools (setuptools, pip, etc.)
  • Cython: Bridge from C/C++ to Python.
  • Modern C++ compiler and Standard Library. Clang or GCC.

MonkeyScope Specifications

  • MonkeyScope.distribution_timer(func: staticmethod, *args, **kwargs) -> None
    • Logger for the statistical analysis of non-deterministic generators.
    • @param func :: function, method or lambda to analyze. Evaluated as func(*args, **kwargs)
    • @optional_kw num_cycles=10000 :: Total number of samples to use for analysis.
    • @optional_kw post_processor=None staticmethod :: Used to scale a large set of data into a smaller set of groupings for better visualization of the data, esp. useful for distributions of floats. For many functions in quick_test(), math.floor() is used, for others round() is more appropriate. For more complex post processing - lambdas work nicely. Post processing only affects the distribution, the statistics and performance results are unaffected.
  • MonkeyScope.distribution(func: staticmethod, *args, **kwargs) -> None
    • Stats and distribution.
  • MonkeyScope.timer(func: staticmethod, *args, **kwargs) -> None
    • Just the function timer.

MonkeyScope Script Example

import MonkeyScope, random


x, y, z = 1, 10, 2
MonkeyScope.distribution_timer(random.randint, x, y)
MonkeyScope.distribution_timer(random.randrange, x, y)
MonkeyScope.distribution_timer(random.randrange, x, y, z)

Typical Script Output

Output Analysis: Random.randint(1, 10)
Typical Timing: 1270 ± 88 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 5.0
 Maximum: 10
 Mean: 5.425
 Std Deviation: 2.867468395641005
Distribution of 100000 samples:
 1: 10.0%
 2: 10.073%
 3: 10.046%
 4: 10.07%
 5: 10.032%
 6: 9.991%
 7: 9.978%
 8: 10.115%
 9: 9.836%
 10: 9.859%

Output Analysis: Random.randrange(1, 10)
Typical Timing: 1135 ± 69 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 5.0
 Maximum: 9
 Mean: 5.028
 Std Deviation: 2.605228588819031
Distribution of 100000 samples:
 1: 11.281%
 2: 11.098%
 3: 11.04%
 4: 11.119%
 5: 10.999%
 6: 11.176%
 7: 11.206%
 8: 11.091%
 9: 10.99%

Output Analysis: Random.randrange(1, 10, 2)
Typical Timing: 1332 ± 55 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 5.0
 Maximum: 9
 Mean: 5.068
 Std Deviation: 2.771890329720857
Distribution of 100000 samples:
 1: 19.868%
 3: 20.025%
 5: 20.001%
 7: 19.811%
 9: 20.295%

Development Log:

MonkeyScope 1.4.4
  • Resolves bug caused by attempting to generate a distribution of non-numeric values.
MonkeyScope 1.4.3
  • Updates calling signature of distribution and distribution_timer
MonkeyScope 1.3.4
  • Adds toml file to aid installation
MonkeyScope 1.3.3
  • Documentation Update
MonkeyScope 1.3.2
  • MonkeyScope no longer requires C++17 compiler. Any C++ compiler should work.
MonkeyScope 1.3.1
  • Documentation Update
  • Nano second precision enabled with time_ns
MonkeyScope 1.3.0
  • No longer requires numpy
  • Requires Python3.7 or later
MonkeyScope 1.2.8
  • Internal Performance Update
  • Final 3.6 release
MonkeyScope 1.2.7
  • Docs update
MonkeyScope 1.2.6
  • Installer Update, will properly install numpy as needed.
MonkeyScope 1.2.5
  • Fixed Typos
MonkeyScope 1.2.4
  • More minor typos fixed
MonkeyScope 1.2.3
  • Minor typos fixed.
MonkeyScope 1.2.2
  • MonkeyScope is now compatible with python notebooks.
MonkeyScope 1.2.1
  • Documentation update
MonkeyScope 1.2.0
  • Minor performance improvement.
MonkeyScope 1.1.5
  • Public Release
MonkeyScope Beta 0.1.5
  • Installer Update
MonkeyScope Beta 0.1.4
  • Minor Bug Fix
MonkeyScope Beta 0.1.3
  • Continued Development
MonkeyScope Beta 0.1.2
  • Renamed to MonkeyScope
MonkeyTimer Beta 0.0.2
  • Changed to c++ compiler
MonkeyTimer Beta 0.0.1
  • Initial Project Setup

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MonkeyScope-1.6.0.tar.gz (85.5 kB view details)

Uploaded Source

Built Distribution

MonkeyScope-1.6.0-cp311-cp311-macosx_10_9_universal2.whl (99.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file MonkeyScope-1.6.0.tar.gz.

File metadata

  • Download URL: MonkeyScope-1.6.0.tar.gz
  • Upload date:
  • Size: 85.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.3

File hashes

Hashes for MonkeyScope-1.6.0.tar.gz
Algorithm Hash digest
SHA256 94623e51e858a36af8052b07de113d13bac356f30af683703d779311d630cb86
MD5 84de4d4971a42f0dd76cc109cc68991c
BLAKE2b-256 d71535e9d445eb9ab61aed3bfdf5416760196a8ef8b617ae473725fafea03baa

See more details on using hashes here.

File details

Details for the file MonkeyScope-1.6.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for MonkeyScope-1.6.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 59664632da4f6df68cf0e68caca473b5544e5dbea6fc10433e306f5330ce64c8
MD5 524ea507092f2ec7131b5b6ddc7eec5d
BLAKE2b-256 95b0cfd18ea1e445a5aa3884473882abc57a94224b472dd3edc6482ce4bff841

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page