Skip to main content

Monster Generator

Project description

MonsterLab

by Robert Sharp

Monster Class

Optional Inputs

It is recommended to pass all the optional arguments or none of them. For example, a custom type requires a custom name.

  • Name: Compound Gaussian Distribution -> String
    • Derived from Type
    • Multidimensional distribution of types and subtypes
  • Type: Wide Flat Distribution -> String
    • Demonic
    • Devilkin
    • Dragon
    • Undead
    • Elemental
    • Fey
    • Undead
  • Level: Poisson Distribution -> Integer
    • Range: [1..20]
    • Most Common: [4..7] ~64%
    • Mean: 6.001
    • Median: 6
  • Rarity: Linear Distribution [Rank 0..Rank 5] -> String
    • Rank 0: 30.5% Very Common
    • Rank 1: 25.0% Common
    • Rank 2: 19.4% Uncommon
    • Rank 3: 13.8% Rare
    • Rank 4: 8.3% Epic
    • Rank 5: 2.7% Legendary

Derived Fields

  • Damage: Compound Geometric Distribution with Linear Noise -> String
    • Derived from Level and Rarity
  • Health: Geometric Distribution with Gaussian Noise -> Float
    • Derived from Level and Rarity
  • Energy: Geometric Distribution with Gaussian Noise -> Float
    • Derived from Level and Rarity
  • Sanity: Geometric Distribution with Gaussian Noise -> Float
    • Derived from Level and Rarity
  • Time Stamp: The Monster's Birthday -> String

Example Monster

  • Name: Revenant
  • Type: Undead
  • Level: 3
  • Rarity: Rank 0
  • Damage: 3d2+1
  • Health: 6.35
  • Energy: 5.78
  • Sanity: 6.0
  • Time Stamp: 2021-08-09 14:23:23

Code Example

$ pip install MonsterLab
$ python3
>>> from MonsterLab import Monster
>>> Monster()
Name: Imp
Type: Demonic
Level: 10
Rarity: Rank 0
Damage: 10d2+1
Health: 20.89
Energy: 20.55
Sanity: 20.79
Time Stamp: 2021-08-09 14:23:23

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MonsterLab-1.0.7.tar.gz (3.9 kB view details)

Uploaded Source

Built Distribution

MonsterLab-1.0.7-py3-none-any.whl (4.0 kB view details)

Uploaded Python 3

File details

Details for the file MonsterLab-1.0.7.tar.gz.

File metadata

  • Download URL: MonsterLab-1.0.7.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for MonsterLab-1.0.7.tar.gz
Algorithm Hash digest
SHA256 e126986943d5a1d253c4e9a3f7ebb7351cf56711aeb79b7467c620de126c673e
MD5 3571df2842f54decf01cd023ed20a19f
BLAKE2b-256 68683e414681a924ebc67d3cd74d00c414e69992b32dedeaade3043d53e0159c

See more details on using hashes here.

File details

Details for the file MonsterLab-1.0.7-py3-none-any.whl.

File metadata

  • Download URL: MonsterLab-1.0.7-py3-none-any.whl
  • Upload date:
  • Size: 4.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for MonsterLab-1.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 ec8035a26d97148e592a47fbe709e50dcfb0a36809f38d3833f2ad0afe313424
MD5 8e1a489823fa4c29e232862ae4682f99
BLAKE2b-256 08e96337b55bfa3042a8478cbe72c88c40d0689f77b90e624e3b0884d7975f02

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page