Skip to main content

Monster Generator

Project description

MonsterLab

by Robert Sharp

Monster Class

Optional Inputs

It is recommended to pass all the optional arguments or none of them. For example, a custom type requires a custom name.

  • Name: Compound Gaussian Distribution -> String
    • Derived from Type
    • Multidimensional distribution of types and subtypes
  • Type: Wide Flat Distribution -> String
    • Demonic
    • Devilkin
    • Dragon
    • Undead
    • Elemental
    • Fey
    • Undead
  • Level: Poisson Distribution -> Integer
    • Range: [1..20]
    • Most Common: [4..7] ~64%
    • Mean: 6.001
    • Median: 6
  • Rarity: Linear Distribution [Rank 0..Rank 5] -> String
    • Rank 0: 30.5% Very Common
    • Rank 1: 25.0% Common
    • Rank 2: 19.4% Uncommon
    • Rank 3: 13.8% Rare
    • Rank 4: 8.3% Epic
    • Rank 5: 2.7% Legendary

Derived Fields

  • Damage: Compound Geometric Distribution with Linear Noise -> String
    • Derived from Level and Rarity
  • Health: Geometric Distribution with Gaussian Noise -> Float
    • Derived from Level and Rarity
  • Energy: Geometric Distribution with Gaussian Noise -> Float
    • Derived from Level and Rarity
  • Sanity: Geometric Distribution with Gaussian Noise -> Float
    • Derived from Level and Rarity
  • Time Stamp: The Monster's Birthday -> String

Example Monster

  • Name: Revenant
  • Type: Undead
  • Level: 3
  • Rarity: Rank 0
  • Damage: 3d2+1
  • Health: 6.35
  • Energy: 5.78
  • Sanity: 6.0
  • Time Stamp: 2021-08-09 14:23:23

Code Example

$ pip install MonsterLab
$ python3
>>> from MonsterLab import Monster
>>> Monster()
Name: Imp
Type: Demonic
Level: 10
Rarity: Rank 0
Damage: 10d2+1
Health: 20.89
Energy: 20.55
Sanity: 20.79
Time Stamp: 2021-08-09 14:23:23

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MonsterLab-1.0.8.tar.gz (4.0 kB view details)

Uploaded Source

Built Distribution

MonsterLab-1.0.8-py3-none-any.whl (4.1 kB view details)

Uploaded Python 3

File details

Details for the file MonsterLab-1.0.8.tar.gz.

File metadata

  • Download URL: MonsterLab-1.0.8.tar.gz
  • Upload date:
  • Size: 4.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for MonsterLab-1.0.8.tar.gz
Algorithm Hash digest
SHA256 57c712722b35a272a12c1058a7ab32797433d416daf8a4bcac580eafa728b517
MD5 6d88cb7d4711f2df6916571bedf9d519
BLAKE2b-256 0e858b4c3c6ab5cb55a467e31e9f74884b73d077aae7a92e1e4ebb5f09cda2d3

See more details on using hashes here.

File details

Details for the file MonsterLab-1.0.8-py3-none-any.whl.

File metadata

  • Download URL: MonsterLab-1.0.8-py3-none-any.whl
  • Upload date:
  • Size: 4.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for MonsterLab-1.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 e26c6210e6b71678894f02d22c145388f9e4eb944cecb2bddf6968e46fc68c1c
MD5 26aff47c40ec99bd3df627d9153da0ce
BLAKE2b-256 325d79de8c6c7d516f4c77eb4164b81d00386ccd4920e5a2410b043eed4982d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page