Skip to main content

Monster Generator

Project description

MonsterLab

by Robert Sharp

Monster Class

Optional Inputs

It is recommended to pass all the optional arguments or none of them. For example, a custom type requires a custom name.

  • Name: Compound Gaussian Distribution -> String
    • Derived from Type
    • Multidimensional distribution of types and subtypes
  • Type: Wide Flat Distribution -> String
    • Demonic
    • Devilkin
    • Dragon
    • Undead
    • Elemental
    • Fey
    • Undead
  • Level: Poisson Distribution -> Integer
    • Range: [1..20]
    • Most Common: [4..7] ~64%
    • Mean: 6.001
    • Median: 6
  • Rarity: Linear Distribution [Rank 0..Rank 5] -> String
    • Rank 0: 30.5% Very Common
    • Rank 1: 25.0% Common
    • Rank 2: 19.4% Uncommon
    • Rank 3: 13.8% Rare
    • Rank 4: 8.3% Epic
    • Rank 5: 2.7% Legendary

Derived Fields

  • Damage: Compound Geometric Distribution with Linear Noise -> String
    • Derived from Level and Rarity
  • Health: Geometric Distribution with Gaussian Noise -> Float
    • Derived from Level and Rarity
  • Energy: Geometric Distribution with Gaussian Noise -> Float
    • Derived from Level and Rarity
  • Sanity: Geometric Distribution with Gaussian Noise -> Float
    • Derived from Level and Rarity
  • Time Stamp: The Monster's Birthday -> String

Example Monster

  • Name: Revenant
  • Type: Undead
  • Level: 3
  • Rarity: Rank 0
  • Damage: 3d2+1
  • Health: 6.35
  • Energy: 5.78
  • Sanity: 6.0
  • Time Stamp: 2021-08-09 14:23:23

Code Example

$ pip install MonsterLab
$ python3
>>> from MonsterLab import Monster
>>> Monster()
Name: Imp
Type: Demonic
Level: 10
Rarity: Rank 0
Damage: 10d2+1
Health: 20.89
Energy: 20.55
Sanity: 20.79
Time Stamp: 2021-08-09 14:23:23

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MonsterLab-1.2.1.tar.gz (4.3 kB view details)

Uploaded Source

Built Distribution

MonsterLab-1.2.1-py3-none-any.whl (4.4 kB view details)

Uploaded Python 3

File details

Details for the file MonsterLab-1.2.1.tar.gz.

File metadata

  • Download URL: MonsterLab-1.2.1.tar.gz
  • Upload date:
  • Size: 4.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for MonsterLab-1.2.1.tar.gz
Algorithm Hash digest
SHA256 159bc9781859e8f92d15417e4fe4231d364d0fbb4a6b461d235ebb08638bdb14
MD5 596c93c4330f5d52595acdc5d98ca730
BLAKE2b-256 2a7ea317ce8969fb285174b0271970d6ae6f82d5139bb4d4bd714d313b8076e9

See more details on using hashes here.

File details

Details for the file MonsterLab-1.2.1-py3-none-any.whl.

File metadata

  • Download URL: MonsterLab-1.2.1-py3-none-any.whl
  • Upload date:
  • Size: 4.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for MonsterLab-1.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 61793cd99b86259a6b60f53e1003d8c65af6ec9ff5e6527358caefe351914120
MD5 3d96b7e43f1208a6bbfc34c5d7f68e92
BLAKE2b-256 b906f8a6e7398a3898ddc4212d89fa97ea75ba7734887cb1b6b8e12503d70486

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page