Skip to main content

api handle for data transform

Project description

Auchor

  • 西安三重像素科技有限公司
  • Xi'an Triple Pixel Technology Co.,
  • @PIPIPINoBrain
  • 联系方式:PIPIPINoBrain@163.com

Mtripix.Mutils.Mtrans(usage)

安装方式

pip install Mtripix

使用示例

import Mtripix.Mutils.Mtrans as Mt

idxs = [1,2,3]
labels = ["dog", "cat", "person"]
d = Mt.labels2dict(labels, idxs)
path_xml = "C:\Users\18829\Desktop\MTP\A.xml" path_txt = "C:\Users\18829\Desktop\MTP\A1.txt"
Mt.xml2yoloobb(path_xml, path_txt, d)

updata

  • 增加了语义分割的标签图像转换
  • 增加了文件夹中标签的统计

Environment

  • json
  • numpy
  • lxml
  • PIL
  • os
  • PIL

Mtripix Function

Mtripix.Mutils(lists)

Mtripix.Mutils.Mtrans(lists)

Mtripix.Mutils.Mtrans(intrudction)

Mtripix.Mutils.Mtrans.labels2dict(labels, idxs)

@input:

  • labels(list/tuple): 标签名 里边都是str
  • idxs(list/tuple): 类别名 里边都是str

@return:

  • namedict(dict) 标签与类别对应的字典

Mtripix.Mutils.Mtrans.voc2yolo(path_xml, path_txt, namedict)

@input:

  • path_xml(str): xml文件地址
  • path_txt(str): 生成的yolo的txt地址
  • namedict(dict): 标签和类别对应的字典

@return:

  • 0

Mtripix.Mutils.Mtrans.json2yolo(path_json, path_txt, namedict, mode)

@input:

  • path_json(str): json文件地址
  • path_txt(str): 生成的yolo的txt地址
  • namedict(dict): 标签和类别对应的字典
  • mode(str): 一共可填两种模式“detection”和“segmentation”, 分别对应yolo检测和分割的文件,默认是“detection”

@return:

  • 0

Mtripix.Mutils.Mtrans.voc2dotaobb(path_xml, path_txt)

@input:

  • pathxml(str): xml文件地址
  • path_txt(str): 生成的DOTA的txt地址

@return:

  • 0

Mtripix.Mutils.Mtrans.voc2yoloobb(path_xml, path_txt, namedict)

@input:

  • path_xml(str): xml文件地址
  • path_txt(str): 生成的yoloobb的txt地址
  • namedict(dict): 标签和类别对应的字典

@return:

  • 0

Mtripix.Mutils.Mtrans.yolo2voc(path_img, path_txt, path_xml, namedict)

@input:

  • path_img(str): 图像地址
  • path_txt(str): 图像的yolo格式txt地址
  • path_xml(str): 生成的xml地址
  • namedict(dict): 类别和标签对应的字典

@return:

  • 0

Mtripix.Mutils.Mtrans.labelsCheck(path, format)

@input:

  • path(str): 当前的标签的文件夹地址
  • format: 需要统计的数据格式,有"voc","yolo"和”data“三种格式

@return:

  • 输出字典, keys是当前的类别, value是当前文件夹中各类别出现的次数

Mtripix.Mutils.Mtrans.json2mask_sem(path_json, path_mask, namedict)

@input:

  • path_json(str): labelme标注的语义分割json文件
  • path_txt(str): 需要保存的8位标签伪图像,png格式
  • namedict(dict): 类别和标签对应的字典

@return:

  • 原图灰度图大小的分类特征图,类别为像素值,背景为0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Mtripix-0.0.7.tar.gz (6.9 kB view details)

Uploaded Source

Built Distribution

Mtripix-0.0.7-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file Mtripix-0.0.7.tar.gz.

File metadata

  • Download URL: Mtripix-0.0.7.tar.gz
  • Upload date:
  • Size: 6.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.8.18

File hashes

Hashes for Mtripix-0.0.7.tar.gz
Algorithm Hash digest
SHA256 cb35024fa9914b09e1de2f1b8c7cb1547a1f11ac075b85b9994e1c0a678aa3a7
MD5 0bd7599f11502cee29f440fa01c36af3
BLAKE2b-256 11c050e3d91f90d776550cd44cf5f22dce1e51172ca2bb4cf36a7b3f38dde004

See more details on using hashes here.

File details

Details for the file Mtripix-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: Mtripix-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 7.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.8.18

File hashes

Hashes for Mtripix-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 c5d870d476824e133bb3f7fac96dd2c685c7ced65611fb47d1941d6fa5bdcb29
MD5 c6c7cc09fd062fd7e7f8fb2efa456932
BLAKE2b-256 e18b8b12b200ed91c5df6eaf04bde0a58447103fd16914e571d796484499999f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page