Skip to main content

Python implementation of the Multilayer Personalized Page Rank algorithm

Project description

MuLP

This repository/package includes a python script that implements the MultilayerCreditScoring (MCS) algorithim presented in Bravo and Óskarsdóttir (2020) and Óskarsdóttir and Bravo (2021, ArXiV , Publisher)

Installation

pip install MuLP

Input instructions

There are three primary input files:

  • Individual layer files (.ncol)
  • Common Nodes file (csv)
  • Personal Node file (csv)

Each layer in the multilayer network requires its own .ncol file with the appropriate ncol file format.

Example ncol layer file (.ncol):

CommonNodeA SpecificNodeA
CommonNodeB SpecificNodeA
CommonNodeC SpecificNodeB
CommonNodeD SpecificNodeC

The inter-layer connections are only allowed between common nodes as to follow the structure layed out by Óskarsdóttir & Bravo (2021):

Example input file(.csv):

CommonNode1
CommonNode2
CommonNode3

To construct the personal matrix one must specify the influence (or personal) nodes in the following format (example input .csv file):

InfluentialNode1
InfluentialNode2
InfluentialNode3

Usage

Multilayer Network Initialization

To create a Multilayer Network the following arguments are available:

layer_files (list): list of layer files

common_nodes_file (str): csv file to common nodes

personal_file (str): file to create personal matrix

bidirectional (bool, optional): wheter edges are biderectional or not. Defaults to False.

sparse (bool, optional): use sparse or dense matrix. Defaults to True.

from MuLP import MultiLayerRanker
ranker = MultiLayerRanker(layer_files=['products.ncol','districts.ncol'],
                           common_nodes_file= './common.csv',
                           personal_file= './personal.csv' ,
                           bidirectional=True,
                           sparse = True)

Ranking

The rank method of the MultiLayerRanker class runs the MultiLayer Personalized PageRank Algorithm. One can choose to run different experiments with varying alphas by specifying it in the method call:

alpha (int,optional): PageRank exploration parameter, defaults to .85

eigs = ranker.pageRank(alpha = .85)

This method returns the leading eigenvector corresponding to each node's rank.

Output Formatting

The formattedRanks method allows getting the rankings with appropriate node labels in a dictionary format: x

eigs (ndarray): corresponding eigenvector to format

ranker.formattedRanks(eigs)

The adjDF method allows getting a personal or adjacency matrix with corresponding labels as a dataframe:

matrix (ndarray) : an adj matrix or personal matrix to transform

f (str,optional): Optional, if true, writes the df to an output csv

#for persoanl matrix
personalDF = ranker.toDf(ranker.personal)
#for adj matrix
adjDf = ranker.toDf(ranker.matrix)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MuLP-1.0.2.tar.gz (17.4 kB view details)

Uploaded Source

Built Distribution

MuLP-1.0.2-py3-none-any.whl (17.7 kB view details)

Uploaded Python 3

File details

Details for the file MuLP-1.0.2.tar.gz.

File metadata

  • Download URL: MuLP-1.0.2.tar.gz
  • Upload date:
  • Size: 17.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.13

File hashes

Hashes for MuLP-1.0.2.tar.gz
Algorithm Hash digest
SHA256 207549ac5d98dad71a976c4e1ca80d37db47ef942b4c6564beca24006e9e3fa3
MD5 bc98a490a8d2d4cb44c5fb9544e33fe8
BLAKE2b-256 4921974eb380b6e7d7dc455e52ed96f05917be0b4e45f01c1a06ef9af8120acf

See more details on using hashes here.

File details

Details for the file MuLP-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: MuLP-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 17.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.13

File hashes

Hashes for MuLP-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ed9b0f0a25a908c79c94d466125102987cae2016cc11e5e0dc5d3027cba8af85
MD5 c777ff50d8e5b616e0d05df78d2dc49c
BLAKE2b-256 8a1b29e6c70515a5eba2da0d1f59498b942b8b40f55018b67a5c9e49877594b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page