Container class for representing and managing multi-omics genomic experiments
Project description
MultiAssayExperiment
Container class to represent and manage multi-omics genomic experiments. Follows Bioconductor's MAE R/Package.
Install
Package is published to PyPI
pip install multiassayexperiment
Usage
First create mock sample data
import pandas as pd
import numpy as np
from genomicranges import GenomicRanges
nrows = 200
ncols = 6
counts = np.random.rand(nrows, ncols)
gr = GenomicRanges(
{
"seqnames": [
"chr1",
"chr2",
"chr2",
"chr2",
"chr1",
"chr1",
"chr3",
"chr3",
"chr3",
"chr3",
]
* 20,
"starts": range(100, 300),
"ends": range(110, 310),
"strand": ["-", "+", "+", "*", "*", "+", "+", "+", "-", "-"] * 20,
"score": range(0, 200),
"GC": [random() for _ in range(10)] * 20,
}
)
col_data_sce = pd.DataFrame(
{
"treatment": ["ChIP", "Input"] * 3,
},
index=["sce"] * 6,
)
col_data_se = pd.DataFrame(
{
"treatment": ["ChIP", "Input"] * 3,
},
index=["se"] * 6,
)
sample_map = pd.DataFrame(
{
"assay": ["sce", "se"] * 6,
"primary": ["sample1", "sample2"] * 6,
"colname": ["sce", "se"] * 6,
}
)
sample_data = pd.DataFrame({"samples": ["sample1", "sample2"]})
Now we can create an instance of an MAE -
from multiassayexperiment import MultiAssayExperiment
from singlecellexperiment import SingleCellExperiment
from summarizedExperiment import SummarizedExperiment
tsce = SingleCellExperiment(
assays={"counts": counts}, row_data=df_gr, col_data=col_data_sce
)
tse2 = SummarizedExperiment(
assays={"counts": counts.copy()},
row_data=df_gr.copy(),
col_data=col_data_se.copy(),
)
mae = MultiAssayExperiment(
experiments={"sce": tsce, "se": tse2},
col_data=sample_data,
sample_map=sample_map,
metadata={"could be": "anything"},
)
For more use cases, checkout the documentation.
Note
This project has been set up using PyScaffold 4.5. For details and usage information on PyScaffold see https://pyscaffold.org/.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file MultiAssayExperiment-0.3.0.tar.gz
.
File metadata
- Download URL: MultiAssayExperiment-0.3.0.tar.gz
- Upload date:
- Size: 1.1 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 65fb1fe2c100ac5babc6c8a97d2df91ac296787d77bce1cfa5cc4d59a7ac221e |
|
MD5 | 36663513d7e56b9ffb01500de6094086 |
|
BLAKE2b-256 | aaa1671bd2228097260604769a9a9d26715f1eaa4a4b1b49892defe429844499 |
File details
Details for the file MultiAssayExperiment-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: MultiAssayExperiment-0.3.0-py3-none-any.whl
- Upload date:
- Size: 13.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 804643a74ea0488c93cabfa7f5e792cc5669515e53ad99af632c58f0d49c8606 |
|
MD5 | 882d68e3e95908f70aa6fa515566a52e |
|
BLAKE2b-256 | 9455b8bf4dd8e1936d7ec1fe2c4969cf98c68d5e66008dc85c4321cd65b08806 |