This package contains code for graphing Muse EEG data
Project description
Muse-Analysis-Tools
Algorithmic Biofeedback Control System - Chart Tools
This script will generate a number of charts from Muse headband EEG CSV data files created by the Mind Monitor app. Future versions of these tools will support Muse Direct and Muse Lab files.
Install instructions:
Download and Install
- Download the archive file, save in a temp directory
- Unzip the file:
$ unzip Muse-Analysis-Tools-master.zip
- Change diretory into the Muse-Analysis-Tools-master directory:
$ cd Muse-Analysis-Tools-master
- Run the setup.py to install the application:
$ python3 setup.py install
Clone using Git and Install
- Clone the project using git in a temp directory.
$ git clone https://github.com/digital-cinema-arts/Muse-Analysis-Tools.git
- Change diretory into the Muse-Analysis-Tools-master directory:
$ cd Muse-Analysis-Tools-master
- Run the setup.py to install the application:
$ python3 setup.py install
NOTE: This application requires Python version 3. To check which version of python you have installed enter this command:
$ python --version
Python 3.7.4
Usage:
- Change directory to where the data files are located (option, sometimes makes it easier to locate files).
- Startup the application:
$ analyze_muse_data.py
- Select the options and CSV file you want to process.
- Make plots!
Notes:
- Output images and session data are created within the same directory that the CSV files live. This will change in the future to allow the user to select the output directory.
For more information about the graphs interface (from matplotlib) please refer to this link: https://matplotlib.org/3.1.1/users/navigation_toolbar.html
The ".ABCS_parms.rc" runtime configuration file can be configured to define often used parameters or for batch processing.
{"First Name": "Debra", "Last Name": "Peri", "Data Dir": "/Volumes/Archive/muse_recordings/muse_monitor_recordings",
"Data Base Location": "/Volumes/Archive/muse_recordings/muse_monitor_recordings", "Filter Data": 1, "Filter Type": 1, "Filter LowCut": 0.5, "Filter HighCut": 70.0}
Options:
$ analyze_muse_data.py -h
usage: analyze_muse_data.py [-h] [-f CSV_FILE] [-v VERBOSE] [-d] [-b] [-p]
[-e] [-hdf5] [-ag] [-mc] [-s] [-c] [-r] [-fd]
[-ft FILTER_TYPE] [-lc LOWCUT] [-hc HIGHCUT]
[-o FILTER_ORDER] [-db]
optional arguments:
-h, --help show this help message and exit
-f CSV_FILE, --csv_file CSV_FILE
CSV file to read)
-v VERBOSE, --verbose VERBOSE
Increase output verbosity
-d, --display_plots Display Plots
-b, --batch Batch Mode
-p, --power Plot Power Bands
-e, --eeg Plot EEG Data
-hdf5, --write_hdf5_file
Write output data into HDF5 file
-ag, --accel_gyro Plot Acceleration and Gyro Data
-mc, --mellow_concentration
Plot Mellow and Concentratio Data (Only For Mind
Monitor Data)
-s, --stats_plots Plot Statistcal Data
-c, --coherence_plots
Plot Coherence Data
-r, --auto_reject_data
Auto Reject EEG Data
-fd, --filter_data Filter EEG Data
-ft FILTER_TYPE, --filter_type FILTER_TYPE
Filter Type 0=default 1=low pass, 2=bandpass
-lc LOWCUT, --lowcut LOWCUT
Filter Low Cuttoff Frequency
-hc HIGHCUT, --highcut HIGHCUT
Filter High Cuttoff Frequency
-o FILTER_ORDER, --filter_order FILTER_ORDER
Filter Order
-db, --data_base Send session data and statistics to database
To fix an error with pandas on Linux that occasionally happens, force a reinstall with this command:
pip install --upgrade --force-reinstall pandas
https://github.com/digital-cinema-arts/Muse-Analysis-Tools/wiki/Example-Plots
Important note on sampling rate: Select "Constant" from the Mind Monitor recording interval option.
Session data in JSON format.
Session/EEG data in HDF5 format.
Donations
https://paypal.me/vinyasakramayoga?locale.x=en_US
If you would like to support this project, to help to contribute to disabled folks and to help youth gain access to yoga (in the Olympia, WA area) please send your kind donations to this paypal account. We appreciate any and all help for this important work.
You can read more about our outreach program here:
https://xion.org/VinyasaKramaYogaOlympia/index.php/rainbow-goddess/
:droplet:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file Muse-Analysis-Tools-1.1.11.tar.gz
.
File metadata
- Download URL: Muse-Analysis-Tools-1.1.11.tar.gz
- Upload date:
- Size: 226.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aaa69c761b728344d6e1d713060653635ccf9d671642d8c5c5eecb9b2be6eee1 |
|
MD5 | 2e5d9f88fb759bbafabe59133bfc50b2 |
|
BLAKE2b-256 | 2f6002755350dc8ad74b25f300fc36c148726523e821786d069ed74a07a93796 |
File details
Details for the file Muse_Analysis_Tools-1.1.11-py3.7.egg
.
File metadata
- Download URL: Muse_Analysis_Tools-1.1.11-py3.7.egg
- Upload date:
- Size: 527.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 95990fd6b17c5df681e8aed05db715ed34463bc21e649f6feab7bc7faf9c0e85 |
|
MD5 | 8bc17789b6b016ecf380b25f453e0d69 |
|
BLAKE2b-256 | 25cb3850c602b98a33083de9c0f2b2bcc59e008463996ba1876baa51bf0fcb02 |
File details
Details for the file Muse_Analysis_Tools-1.1.11-py3-none-any.whl
.
File metadata
- Download URL: Muse_Analysis_Tools-1.1.11-py3-none-any.whl
- Upload date:
- Size: 463.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | da8abaf69dfe292fa06493a9fafc8f3e5bfb7505b4ec4320c56462f6e8d8cfcf |
|
MD5 | bffd1ad5084e7b9a366b068bc65d2854 |
|
BLAKE2b-256 | 8f66a743ecc1917c4199ea7dbc25366ec90c1ab6cce68258d5e3fff7598772ea |