Skip to main content

This package contains code for graphing Muse EEG data

Project description

Muse-Analysis-Tools

Algorithmic Biofeedback Control System - Chart Tools

This script will generate a number of charts from Muse headband EEG CSV data files created by the Mind Monitor app. Future versions of these tools will support Muse Direct and Muse Lab files.


Install instructions:

Download and Install

  1. Download the archive file, save in a temp directory
  2. Unzip the file:
    $ unzip Muse-Analysis-Tools-master.zip
  3. Change diretory into the Muse-Analysis-Tools-master directory:
    $ cd Muse-Analysis-Tools-master
  4. Run the setup.py to install the application:
    $ python3 setup.py install

Clone using Git and Install

  1. Clone the project using git in a temp directory.
    $ git clone https://github.com/digital-cinema-arts/Muse-Analysis-Tools.git
  2. Change diretory into the Muse-Analysis-Tools-master directory:
    $ cd Muse-Analysis-Tools-master
  3. Run the setup.py to install the application:
    $ python3 setup.py install

Install from the Python Python Package Index

The project can be view here: https://pypi.org/project/Muse-Analysis-Tools/

Using the 'pip' command:
$ pip install Muse-Analysis-Tools

Using the 'pip3' command to ensure you're installing the Python 3 packages:
$ pip3 install Muse-Analysis-Tools


NOTE: This application requires Python version 3. To check which version of python you have installed enter this command:
$ python --version
Python 3.7.4

To fix an error with pandas on Linux that occasionally happens, force a reinstall with this command:

pip install --upgrade --force-reinstall pandas

Usage:

  1. Change directory to where the data files are located (sometimes this makes it easier to locate files).
$ cd /Volumes/Archive/muse_recordings/muse_monitor_recordings/   
  1. Startup the application:
    $ analyze_muse_data.py
  2. Select the options and CSV file you want to process.
  3. Make plots!

Notes:

  1. Output images and session data are created within the same directory that the CSV files live. This will change in the future to allow the user to select the output directory.

For more information about the graphs interface (from matplotlib) please refer to this link: https://matplotlib.org/3.1.1/users/navigation_toolbar.html


Options:


$ analyze_muse_data.py -h 

usage: analyze_muse_data.py [-h] [--version] [-f CSV_FILE] [-v VERBOSE] [-d]
                            [-b] [-dm] [-p] [-e] [-hdf5] [-ag] [-mc] [-s] [-c]
                            [--plot_style PLOT_STYLE] [-r] [-fd]
                            [-ft FILTER_TYPE] [-lc LOWCUT] [-hc HIGHCUT]
                            [-o FILTER_ORDER] [-db]

optional arguments:
  -h, --help            show this help message and exit
  --version             Print the current version number
  -f CSV_FILE, --csv_file CSV_FILE
                        CSV file to read)
  -v VERBOSE, --verbose VERBOSE
                        Increase output verbosity
  -d, --display_plots   Display Plots
  -b, --batch           Batch Mode
  -dm, --data_markers   Add Data Markers
  -p, --power           Plot Power Bands
  -e, --eeg             Plot EEG Data
  -hdf5, --write_hdf5_file
                        Write output data into HDF5 file
  -ag, --accel_gyro     Plot Acceleration and Gyro Data
  -mc, --mellow_concentration
                        Plot Mellow and Concentratio Data (Only For Mind
                        Monitor Data)
  -s, --stats_plots     Plot Statistcal Data
  -c, --coherence_plots
                        Plot Coherence Data
  --plot_style PLOT_STYLE
                        Plot Syle: 1=seaborn, 2=seaborn-pastel, 3=seaborn-
                        ticks, 4=fast, 5=bmh
  -r, --auto_reject_data
                        Auto Reject EEG Data
  -fd, --filter_data    Filter EEG Data
  -ft FILTER_TYPE, --filter_type FILTER_TYPE
                        Filter Type 0=default 1=low pass, 2=bandpass
  -lc LOWCUT, --lowcut LOWCUT
                        Filter Low Cuttoff Frequency
  -hc HIGHCUT, --highcut HIGHCUT
                        Filter High Cuttoff Frequency
  -o FILTER_ORDER, --filter_order FILTER_ORDER
                        Filter Order
  -db, --data_base      Send session data and statistics to database

To find the current version of the appliction:

Current version:  1.1.17

The ".ABCS_parms.rc" runtime configuration file can be configured to define often used parameters or for batch processing.

{"First Name": "Debra", "Last Name": "Peri", "Data Dir": "/Volumes/Archive/muse_recordings/muse_monitor_recordings",
"Data Base Location": "/Volumes/Archive/muse_recordings/muse_monitor_recordings", "Filter Data": 1, "Filter Type": 1, "Filter LowCut": 0.5, "Filter HighCut": 70.0}

picture alt

https://github.com/digital-cinema-arts/Muse-Analysis-Tools/wiki/Example-Plots


Important note on sampling rate: Select "Constant" from the Mind Monitor recording interval option.

picture alt


Session data in JSON format.

picture alt


Session/EEG data in HDF5 format.

picture alt

picture alt


Donations

https://paypal.me/vinyasakramayoga?locale.x=en_US

If you would like to support this project, to help to contribute to disabled folks and to help youth gain access to yoga (in the Olympia, WA area) please send your kind donations to this paypal account. We appreciate any and all help for this important work.

You can read more about our outreach program here:

https://xion.org/VinyasaKramaYogaOlympia/index.php/rainbow-goddess/

:droplet:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Muse-Analysis-Tools-1.1.22.tar.gz (230.1 kB view details)

Uploaded Source

Built Distributions

Muse_Analysis_Tools-1.1.22-py3.7.egg (540.8 kB view details)

Uploaded Source

Muse_Analysis_Tools-1.1.22-py3-none-any.whl (471.9 kB view details)

Uploaded Python 3

File details

Details for the file Muse-Analysis-Tools-1.1.22.tar.gz.

File metadata

  • Download URL: Muse-Analysis-Tools-1.1.22.tar.gz
  • Upload date:
  • Size: 230.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.4

File hashes

Hashes for Muse-Analysis-Tools-1.1.22.tar.gz
Algorithm Hash digest
SHA256 8321fe29566d80d89ab08061f63167a5595eb71b9f978a5a064e66e30fcd68a0
MD5 e0ddd5561ccb54a5155bc6383c6741bc
BLAKE2b-256 356b14374c2ebace223f144f8f9d95292e2c0b1b4f68b695d7ca5ae1976b3a66

See more details on using hashes here.

File details

Details for the file Muse_Analysis_Tools-1.1.22-py3.7.egg.

File metadata

  • Download URL: Muse_Analysis_Tools-1.1.22-py3.7.egg
  • Upload date:
  • Size: 540.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.4

File hashes

Hashes for Muse_Analysis_Tools-1.1.22-py3.7.egg
Algorithm Hash digest
SHA256 3fc2df97e5d9628a14817a8fc848bf8e8442c6481711cbb737ba672429e7a452
MD5 11beaef0bb127f0ebbc2a26aa6c4ac0f
BLAKE2b-256 44f936e6701fbd4668b30d59218f93791beae9dc1ea07f67eb22065eea60c38b

See more details on using hashes here.

File details

Details for the file Muse_Analysis_Tools-1.1.22-py3-none-any.whl.

File metadata

  • Download URL: Muse_Analysis_Tools-1.1.22-py3-none-any.whl
  • Upload date:
  • Size: 471.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.4

File hashes

Hashes for Muse_Analysis_Tools-1.1.22-py3-none-any.whl
Algorithm Hash digest
SHA256 b9a7e287ba31b843ac0af003206117aa4793c22bb947ae789d69969006e1a73d
MD5 e145cb3ae2a087529208ba925575b0a3
BLAKE2b-256 467258d918a1f4ff8f9738153a6ac1552d75a06c23051d0b005bc1c72c0178f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page