Skip to main content

Setup local serverless SQL Gaia/2MASS/ALLWISE/CATWISE databases and run query locally with python

Project description

Why share when you can have the entire Gaia database locally?

MyGaiaDB is a simple Python package that provides scripts to help you set up a local Gaia DR3 database, along with local 2MASS, ALLWISE, and CATWISE databases, without needing administrative privileges. It’s compatible with all major platforms (Linux, Mac, and Windows) because MyGaiaDB is serverless and only requires Python with sqlite, as long as you have enough disk space.

This code was primarily developed to assist with my research project involving Gaia DR3 XP spectra. It is not intended to cover every aspect of research using Gaia’s 1 billion stars. The main goal of this code is to make setting up a local Gaia database, along with 2MASS, ALLWISE, and CATWISE, accessible to everyone. Potential use cases include, but are not limited to, making complex and lengthy cross-matching queries with multiple databases, which can be time-consuming (especially given the online ESA Gaia archive’s timeout limitations).

Feel free to modify the code and submit pull requests to enhance its functionality for yourself and others.

Parts of this code are not continuously tested, as it is impractical to run this code with several terabytes of Gaia data on GitHub Actions.

Installation and Dependencies

This code requires python >= 3.8 with numpy, pandas, h5py, astropy and tqdm. This code only needs the sqlite3 library that comes bundled with your Python installation. For some optional functionalities, galpy, mwdust are required. Downloading functions will require wget.

You can install the precompiled MyGaiaDB wheels by running pip install mygaiadb.

Alternatively, you can compile the code locally from the source. You’ll need to add the folder containing sqlite3ext.h to your INCLUDE environment variable. For Conda users, the commands are:

  • Windows Command Prompt: set INCLUDE=%CONDA_PREFIX%\Library\include;%INCLUDE%

  • Windows PowerShell: $env:INCLUDE="$env:CONDA_PREFIX\Library\include"

  • MacOS: export CFLAGS=-I$CONDA_PREFIX/include

  • Linux: No action needed usually

Then, you can run python -m pip install . to install the latest commits from GitHub or python -m pip install -e . to develop MyGaiaDB locally.

Folder Structure

Ensure you have at least ~8TB of free disk space with fast random read speed for optimal query performance. First, set an environment variable called MY_ASTRO_DATA that points to a folder containing your astronomical data. To be compatible with other Python packages, there should be a folder called gaia_mirror under MY_ASTRO_DATA that contains all Gaia data (similar to the GAIA_TOOLS_DATA environment variable used by Jo Bovy’s gaia_tools).

If starting from scratch on a clean computer, set the MY_ASTRO_DATA environment variable, and MyGaiaDB will populate the necessary files and folders. MyGaiaDB will use the ~/.mygaiadb folder to save user-specific settings and tables.

If you already have the data on your computer but in a different directory structure and cannot move them, you can use symbolic links to create the required folder structure without duplicating files. For Linux and MacOS, use ln -s {source-dir-or-file-path} {symbolic-dir-or-file-path}. For Windows, use mklink {symbolic-file-path} {source-file-path} or mklink /D {symbolic-dir-path} {source-dir-path}. The case sensitive folder structure should look something like the following chart:

~/
├── .mygaiadb

$MY_ASTRO_DATA/
├── gaia_mirror/
│   ├── Gaia/
│   │   ├── gdr3/
│   │   │   ├── Astrophysical_parameters/astrophysical_parameters/
│   │   │   │   ├── _MD5SUM.txt
│   │   │   │   ├── AstrophysicalParameters_000000-003111.csv.gz
│   │   │   │   ├── ******
│   │   │   │   └── AstrophysicalParameters_786097-786431.csv.gz
│   │   │   ├── gaia_source/
│   │   │   │   ├── _MD5SUM.txt
│   │   │   │   ├── GaiaSource_000000-003111.csv.gz
│   │   │   │   ├── ******
│   │   │   │   └── GaiaSource_786097-786431.csv.gz
│   │   │   ├── cross_match/
│   │   │   │   ├── allwise_best_neighbour/
│   │   │   │   │   ├── _MD5SUM.txt
│   │   │   │   │   ├── allwiseBestNeighbour0001.csv.gz
│   │   │   │   │   ├── ******
│   │   │   │   │   └── allwiseBestNeighbour0033.csv.gz
│   │   │   │   ├── tmasspscxsc_best_neighbour/
│   │   │   │   │   ├── _MD5SUM.txt
│   │   │   │   │   ├── tmasspscxscBestNeighbour0001.csv.gz
│   │   │   │   │   ├── ******
│   │   │   │   │   └── tmasspscxscBestNeighbour0047.csv.gz
│   │   │   ├── Spectroscopy/
│   │   │   │   ├── rvs_mean_spectrum/
│   │   │   │   │   ├── _MD5SUM.txt
│   │   │   │   │   ├── RvsMeanSpectrum_000000-003111.csv.gz
│   │   │   │   │   ├── ******
│   │   │   │   │   └── RvsMeanSpectrum_786097-786431.csv.gz
│   │   │   │   ├── xp_continuous_mean_spectrum/
│   │   │   │   │   ├── _MD5SUM.txt
│   │   │   │   │   ├── XpContinuousMeanSpectrum_000000-003111.csv.gz
│   │   │   │   │   ├── ******
│   │   │   │   │   └── XpContinuousMeanSpectrum_786097-786431.csv.gz
│   │   │   │   ├── xp_sampled_mean_spectrum/
│   │   │   │   │   ├── _MD5SUM.txt
│   │   │   │   │   ├── XpSampledMeanSpectrum_000000-003111.csv.gz
│   │   │   │   │   ├── ******
│   │   │   │   │   └── XpSampledMeanSpectrum_786097-786431.csv.gz
├── 2mass_mirror/
│   ├── psc_aaa.gz
│   ├── ******
│   └── xsc_baa.gz
├── allwise_mirror/
│   ├── wise-allwise-cat-part01.bz2
│   ├── ******
│   └── wise-allwise-cat-part48.bz2
└── catwise_mirror/
    └── 2020/
        ├── 000/
        │   ├── 0000m016_opt1_20191208_213403_ab_v5_cat_b0.tbl.gz
        │   └── ******
        ├── 001/
        │   ├── 0015m016_opt1_20191209_054819_ab_v5_cat_b0.tbl.gz
        │   └── ******
        └── ******

Downloading Data

To download and populate data with MyGaiaDB, you can do

from mygaiadb.data import download

# for gaia_source
download.download_gaia_source()
# for gaia astrophysical_parameters
download.download_gaia_astrophysical_parameters()
# for 2mass best neightbour
download.download_2mass_best_neightbour()
# for allwise best neightbour
download.download_allwise_best_neightbour()
# for 2MASS
download.download_2mass()
# for allwise
download.download_allwise()
# for catwise
download.download_catwise()
# for xp continuous
download.download_gaia_xp_continuous()
# for xp sampled
download.download_gaia_xp_sampled()
# for rvs spectra
download.download_gaia_rvs()

Official data links:

Compiling Databases

The following functions are used to compile the databases. Each function only needs to be run once per computer where the data is stored, and each function will generate large-sized files. If you are using a shared computing server, only one user needs to run these functions. Once the databases are compiled, share the MY_ASTRO_DATA folder path with other users. They can set their own MY_ASTRO_DATA environment variable to point to that folder. Multiple users on the same computers can access the SQL database simultaneously, as MyGaiaDB will set the databases to read-only mode before loading them, preventing accidental modifications.

from mygaiadb.data import compile

# compile Gaia SQL dataset
compile.compile_gaia_sql_db()
# compile 2MASS SQL dataset
compile.compile_tmass_sql_db()
# compile ALLWISE SQL dataset
compile.compile_allwise_sql_db()
# compile CATWISE SQL dataset
compile.compile_catwise_sql_db()

# turn compressed XP coeffs files to h5, with options to save correlation matrix too
# a large amount of disk space (~3TB) is required if save_correlation_matrix=True
compile.compile_xp_continuous_h5(save_correlation_matrix=False)
# compile all XP coeffs into a single h5, partitioned batches of stars by their HEALPix
# with options to save correlation matrix too, BUT it requires yo to run compile_xp_continuous_h5(save_correlation_matrix=True) first
# a large amount of disk space (~3TB) is required if save_correlation_matrix=True
compile.compile_xp_continuous_allinone_h5(save_correlation_matrix=False)

SQL Databases Data Model

In MyGaiaDB, the following databases are available if all have been compiled: gaiadr3.gaia_source, gaiadr3.allwise_best_neighbour, gaiadr3.tmasspscxsc_best_neighbour, gaiadr3.astrophysical_parameters, tmass.twomass_psc, allwise.allwise and catwise.catwise. A few utility functions are available to list tables and their columns. Below is a brief description of each table:

You can use the list_all_tables() function to get a list of tables, excluding user_table. For example:

from mygaiadb.query import LocalGaiaSQL

# initialize a local Gaia SQL database instance
local_db = LocalGaiaSQL()

# print a list of tables
print(local_db.list_all_tables())

You can use get_table_column(table_name) to get a list of columns of a table which must be in the format of {database_name}.{table_name}, gaiadr3.gaia_source in this case

from mygaiadb.query import LocalGaiaSQL

# initialize a local Gaia SQL database instance
local_db = LocalGaiaSQL()

# print a list of columns of a table
print(local_db.get_table_column("gaiadr3.gaia_source"))

If you want to manage and edit the databases with GUI, you can try to use SQLiteStudio or DB Browser for SQLite.

SQL Query

SQL query in MyGaiaDB is largely the same as Gaia Archive. Although MyGaiaDB has implemented all mathematical functions in way aligned with ADQL, MyGaiaDB has only implemented a few advanced ADQL function like DISTANCE as well as additional functions on ESA Gaia TAP+.

For example the following query which used a special function called DISTANCE defined in ADQL

SELECT DISTANCE(179., 10., G.ra, G.dec) as ang_sep
FROM gaiadr3.gaia_source as G
WHERE G.source_id = 4472832130942575872

returns 89.618118 on Gaia Archive. And you can also use such query in the same manner as you would on Gaia Archive

from mygaiadb.query import LocalGaiaSQL

# initialize a local Gaia SQL database instance
local_db = LocalGaiaSQL()
local_db.query("""
    SELECT DISTANCE(179., 10., G.ra, G.dec) as ang_sep
    FROM gaiadr3.gaia_source as G
    WHERE G.source_id = 4472832130942575872
""")

and you will get the same result of 89.618118.

For example the following query which utilize conventional maths function to approximate uncertainty in Gaia G magnitude

from mygaiadb.query import LocalGaiaSQL

# initialize a local Gaia SQL database instance
local_db = LocalGaiaSQL()
# CDS equation for conversion: http://vizier.cds.unistra.fr/viz-bin/VizieR-n?-source=METAnot&catid=1350&notid=63&-out=text
local_db.query("""
    SELECT sqrt(power(((2.5 / log(10)) * (1 / G.phot_g_mean_flux_over_error)), 2) + power(0.0027553202, 2)) as phot_g_mean_mag_error
    FROM gaiadr3.gaia_source as G
    WHERE G.source_id = 3158175803069175680
""")

Another example is the following query that works on Gaia Archive will also work in MyGaiaDB to select the first 100 gaia sources with XP coefficients

SELECT TOP 100 *
FROM gaiadr3.gaia_source as G
WHERE (G.has_xp_continuous = 'True')

To run this query in MyGaiaDB, you can do the following and will get a pandas Dataframe back as the result

from mygaiadb.query import LocalGaiaSQL

# initialize a local Gaia SQL database instance
local_db = LocalGaiaSQL()
local_db.query("""SELECT TOP 100 * FROM gaiadr3.gaia_source as G  WHERE (G.has_xp_continuous = 'True')""")

The following example query is too complex for Gaia Archive, thus you will get timeout error but luckily, you’ve got MyGaiaDB to do the job. The following example query from gaia_source table, astrophysical_parameters table, 2MASS and ALLWISE table all at once. Moreover, MyGaiaDB set each dataset to read-only before loading it. If you want to edit the database afterward, you must set the appropriate permission manually each time you have used MyGaiaDB.

from mygaiadb.query import LocalGaiaSQL

# initialize a local Gaia SQL database instance
local_db = LocalGaiaSQL()

query = """
SELECT G.source_id, G.ra, G.dec, G.pmra, G.pmdec, G.parallax, G.parallax_error, G.phot_g_mean_mag, GA.logg_gspspec,
TM.j_m, AW.w1mpro
FROM gaiadr3.gaia_source as G
INNER JOIN gaiadr3.astrophysical_parameters as GA on GA.source_id = G.source_id
INNER JOIN gaiadr3.tmasspscxsc_best_neighbour as T on G.source_id = T.source_id
INNER JOIN gaiadr3.allwise_best_neighbour as W on W.source_id = T.source_id
INNER JOIN tmass.twomass_psc as TM on TM.designation = T.original_ext_source_id
INNER JOIN allwise.allwise as AW on AW.designation = W.original_ext_source_id
WHERE (G.has_xp_continuous = 1) AND (G.ruwe < 1.4) AND (G.ipd_frac_multi_peak <= 2) AND (G.ipd_gof_harmonic_amplitude<0.1) AND (GA.logg_gspspec < 3.0)
"""

# take ~12 hours to complete
local_db.save_csv(query, "output.csv", chunksize=50000, overwrite=True, comments=True)

As you can see for has_xp_continuous, we can also use 1 to represent true which is used by Gaia archive but both are fine with MyGaiaDB. The overwrite=True means the function will save the file even if the file with the same name already exists. The comments=True means the function will save the query as a comment in the csv file so you know how to reproduce the query result. To read the comments from the csv file, you can use the following code

from itertools import takewhile
with open("output.csv", "r") as fobj:
    headiter = takewhile(lambda s: s.startswith("#"), fobj)
    header = list(headiter)
print(" ".join(header).replace(" # ", "").replace("# ", ""))

MyGaiaDB also has callbacks functionality called LambdaCallback, these callbacks can be used when you do query. For example, you can create a callbacks to convert ra in degree to ra_rad in radian. So your csv file in the end will have a new column called ra_rad. Functions in LambdaCallback must have arguments with exact column names in your query so MyGaiaDB knows which columns to use on the fly.

import numpy as np
from mygaiadb.query import LocalGaiaSQL, LambdaCallback

# initialize a local Gaia SQL database instance
local_db = LocalGaiaSQL()

query = """
SELECT G.source_id, G.ra, G.dec
FROM gaiadr3.gaia_source as G
LIMIT 100000
"""
ra_conversion = LambdaCallback(new_col_name="ra_rad", func=lambda ra: ra / 180 * np.pi)

local_db.save_csv(query, "output.csv", chunksize=50000, overwrite=True, callbacks=[ra_conversion], comments=True)

We also have a few useful callbacks included by default to add columns like zero-point corrected parallax or extinction

from mygaiadb.query import ZeroPointCallback, DustCallback

query = """
SELECT G.source_id, G.ra, G.dec, G.parallax, G.phot_bp_mean_mag, G.nu_eff_used_in_astrometry, G.pseudocolour, G.astrometric_params_solved
FROM gaiadr3.gaia_source as G
LIMIT 100000
"""

# adding zero-point corrected parallax using official Gaia DR3 parallax zero-point python package
zp_callback = ZeroPointCallback(new_col_name="parallax_w_zp")
# adding SFD E(B-V) in 2MASS H band filter using mwdust python package
dust_callback = DustCallback(new_col_name="sfd_ebv", filter="2MASS H", dustmap="SFD")

local_db.save_csv(query, "output.csv", chunksize=50000, overwrite=True, callbacks=[zp_callback, dust_callback])

User tables

MyGaiaDB support the use of user uploaded table. You can load your table first by pandas and then do

from mygaiadb.query import LocalGaiaSQL
local_db = LocalGaiaSQL()
local_db.upload_user_table(pd.DataFrame({"source_id": [5188146770731873152, 4611686018427432192, 5764607527332179584]}), tablename="my_table_1")

and then carry-on doing query with my_table_1 cross-matching with other tables like

local_db.query("""SELECT * FROM gaiadr3.gaia_source as G  INNER JOIN user_table.my_table_1 as MY on MY.source_id = G.source_id""")

You can check the list of your own user tables with column names by using list_user_tables()

local_db.list_user_tables()

and you can remove a user table like my_table_1 in this case by using remove_user_table()

local_db.remove_user_table("my_table_1")

Gaia XP Spectroscopy Query

There can be use case where you want to run a function (e.g., a machine learning model) to a large batch of Gaia source ids with reasonable memory usage. You can use MyGaiaDB to do that in batch provided you have compiled a single h5 with mygaiadb.compile.compile_xp_continuous_allinone_h5()

from mygaiadb.spec import yield_xp_coeffs

for i in yield_xp_coeffs(a_very_long_source_id_array):
    coeffs, idx = i
    # XP coeffs of idx from the original a_very_long_source_id_array

# alternatively if you also want coeffs error
for i in yield_xp_coeffs(a_very_long_source_id_array, return_errors=True):
    coeffs, idx, coeffs_err = i  # unpack

# alternatively if you want coeffs error and some other columns like bp_n_relevant_basesand rp_n_relevant_bases
# ref: https://gea.esac.esa.int/archive/documentation/GDR3//Gaia_archive/chap_datamodel/sec_dm_spectroscopic_tables/ssec_dm_xp_summary.html
for i in yield_xp_coeffs(a_very_long_source_id_array, return_errors=True, return_additional_columns=["bp_n_relevant_bases", "rp_n_relevant_bases"]):
    coeffs, idx, coeffs_err, bp_n_relevant_bases, rp_n_relevant_bases = i  # unpack

For example you want to infer M_H with your machine learning model on many XP spectra

from mygaiadb.spec import yield_xp_coeffs

m_h = np.ones(len(a_very_long_source_id_array)) * np.nan
for i in yield_xp_coeffs(a_very_long_source_id_array):
    coeffs, idx = i  # unpack
    m_h[idx] = your_ml_model(coeffs)

Author

  • Henry Leung - henrysky
    University of Toronto
    Contact Henry: henrysky.leung [at] utoronto.ca

This package is original developed for the paper Towards an astronomical foundation model for stars with a Transformer-based model.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mygaiadb-0.5.1.tar.gz (43.1 kB view details)

Uploaded Source

Built Distributions

MyGaiaDB-0.5.1-cp312-cp312-win_amd64.whl (45.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

MyGaiaDB-0.5.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (57.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

MyGaiaDB-0.5.1-cp312-cp312-macosx_11_0_arm64.whl (42.3 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

MyGaiaDB-0.5.1-cp312-cp312-macosx_10_9_x86_64.whl (42.0 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

MyGaiaDB-0.5.1-cp311-cp311-win_amd64.whl (45.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

MyGaiaDB-0.5.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (57.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

MyGaiaDB-0.5.1-cp311-cp311-macosx_11_0_arm64.whl (42.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

MyGaiaDB-0.5.1-cp311-cp311-macosx_10_9_x86_64.whl (42.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

MyGaiaDB-0.5.1-cp310-cp310-win_amd64.whl (45.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

MyGaiaDB-0.5.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (57.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

MyGaiaDB-0.5.1-cp310-cp310-macosx_11_0_arm64.whl (42.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

MyGaiaDB-0.5.1-cp310-cp310-macosx_10_9_x86_64.whl (42.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

MyGaiaDB-0.5.1-cp39-cp39-win_amd64.whl (45.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

MyGaiaDB-0.5.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (57.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

MyGaiaDB-0.5.1-cp39-cp39-macosx_11_0_arm64.whl (42.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

MyGaiaDB-0.5.1-cp39-cp39-macosx_10_9_x86_64.whl (42.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

MyGaiaDB-0.5.1-cp38-cp38-win_amd64.whl (45.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

MyGaiaDB-0.5.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (57.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

MyGaiaDB-0.5.1-cp38-cp38-macosx_11_0_arm64.whl (42.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

MyGaiaDB-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl (42.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file mygaiadb-0.5.1.tar.gz.

File metadata

  • Download URL: mygaiadb-0.5.1.tar.gz
  • Upload date:
  • Size: 43.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mygaiadb-0.5.1.tar.gz
Algorithm Hash digest
SHA256 e05787ff07934cd1071ad5e733c8a1721b2b942323b0cdfa6a0cfaf126dadd47
MD5 47d5fda21775106c0f545b63c28958d3
BLAKE2b-256 d8727326dfa312d71277a61b077ce972bcb4cc63839d38b965b1a1442f6e0102

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: MyGaiaDB-0.5.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 45.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for MyGaiaDB-0.5.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 726d865fa255ad61e7fd43f535fc949c772702fa03b994a9ec20524ef864e5ee
MD5 80cb6454d9f8546db5c42542156f179c
BLAKE2b-256 2d26befa9aa760d709b0c001666b4bcae3185cc0cc43e9706d90494c601e7555

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3371fb77c6da1b523b3d38199f6990934e401e2dca037fa1c681086f394f9666
MD5 1ee71bf6af3a370dce11b308147213f7
BLAKE2b-256 358918b8afddf336779cae489baa3a59c0c2837ad3fd5bd54feacad091de82f4

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2d421f63893e6b31391b67396e4c6a7e9e39c75ce7d706b022d6490c84848d8f
MD5 8daf74ee4c5882fb6afc33cec4aecb96
BLAKE2b-256 dd997dbeec68dd8a42d98a3d7467863e51a0783f43c1048a127cbe29bc688014

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 15437df6c3b0b568bc1e7bf75fe393dbf5f0786002a2ae1712afee80c14ba823
MD5 422e5768f15e86009f0ef41379089564
BLAKE2b-256 b897d1eb6bed35f6fb3140926dd41b6bc72d7dd73d7582b7ceaaaa695a83d72c

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: MyGaiaDB-0.5.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 45.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for MyGaiaDB-0.5.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e599dd9216668d7769244a3c9f601f9a1f5558ac00862b16d9d3e1cb0a418e6d
MD5 4b625e2c14342c63c66b1e031ff6f7d2
BLAKE2b-256 dd35dfa66895fb48379deea3d12f1a18234b4d53e77f7287ee96e750990f1424

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b76ef86b5f71c82d2fcb615c1c1d837ed0f0c8d471c1ad29f191bb449a938f9
MD5 9875b59c42c61aac9d9b0f8799ea6214
BLAKE2b-256 9843ea8217b23a7d57dbaa5825944ff8aef60bfd8616013bd76f570d26ace360

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 47651e99a90b4145ec7d32c5784612c8c80e07a2fa6ae532ec2dd0ddfd601335
MD5 5500b01442d5906ff8612253602a339a
BLAKE2b-256 2af7b31863a983cecc946266e9cf15533a0059f00832a598ab9ef83cbf2199f8

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 879586335ead733354fbcaedadb85971c4a3e7bcbad3048e39439efd4fd2123c
MD5 e8d0298b0554ee62760db832abe66158
BLAKE2b-256 3bb09c3b5e7f3800d200b60c48bf2318bbf951f67b573a60e389920db975fcab

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: MyGaiaDB-0.5.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 45.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for MyGaiaDB-0.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 71e7c64a02f93a3535ec20189d9dbb1ae265cb245c4ea772b1f169067c5a129c
MD5 4af436585891f988580b5888b12ddb31
BLAKE2b-256 f3000de7469a3dab6c71d3ebf0bd95db96424454e626c428d2b671ec9a1e36ac

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b85c97b283ef75bd02625f029da6fa065628d660c2e7edd5574cf8357e79089d
MD5 1276139199294e2ac38611b1f6a1d0e8
BLAKE2b-256 5dff9f46eaa87b849689f18fcaa94064dca205b9475fd10e3431ba555a04042d

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b4b8638f8683561036a5ba084f7fb6dd8a522cfb76121b6d8dd3d3687c3e846c
MD5 cd7ce0403001935f2315d80422416d6e
BLAKE2b-256 d7de2bc7f30b025d1b9f100afc19563603f57abc51e62cf50743a34b566cb560

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9ba9c2eefce89c418d70f9a8bc17b68ad87d2c419796b44aba14d968a7bb079c
MD5 86000f4ae6b447e2fc31025e29b56437
BLAKE2b-256 6b619e13f63d701b9d360143861af5957102a498430601e3cb3cd8540142194e

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: MyGaiaDB-0.5.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 45.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for MyGaiaDB-0.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4d1939d91bbe890e5fac91e0272abaebb16fe357fd3dcb4415a5082504a48886
MD5 b38c64c24a1be01b4d6df338ae16b88c
BLAKE2b-256 d04ba4fbc82ae2b2fbc9967cc054884b3a1323a25e5ac5e0bc31f6b9bc0c47ae

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e67118706c33ed1bc134df99e3e3eb5c3984d607196e33fdbfa6c0e9f8b27c6
MD5 d0855666f72942ee7192537aa7b36470
BLAKE2b-256 22bd6d5ba4f568189c632f0367cba2caf01268c767d63e0990db2dd4a3436c05

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 15ec51d5dd80265ad48bade8498193c53b1adde4ee35a686064859ce6d4ff2b3
MD5 af8e61fd4f4dae8b28475f613f797bc4
BLAKE2b-256 b9894d21ca83f3e2d8e85db421bf25c937d066e2827aadf727f9586be7af2eaa

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d5667090595cf7923274fe98dc071adb44069ba43623603c31857af97ee9bc42
MD5 e85ebae19c04963cb6972a75d8de1b76
BLAKE2b-256 2fe0a21ca8f71cd9e98a87c7b83d3382e5d198502257d0df69a82be14bfbb3ed

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: MyGaiaDB-0.5.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 45.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for MyGaiaDB-0.5.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4551ec088eea85e60ef431948cce36c4082c30988f8256a4587bd8f0035b52c9
MD5 22e703f2f6a2641ebf454f1780bbdd4c
BLAKE2b-256 c750bd7cb6f1065b371445195e39db305e4795ebff69613ff6ada5d96f8b4379

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1209d6fee30f090357b2435260c34caf710e275e18442239c1d4a2ac51af2ec9
MD5 c56bd6e361cfeee3daaa264fbc0360cd
BLAKE2b-256 e47670d953dccd3ca49ed9bee550e932c2f24becc540217474d978fab02bdb81

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 99934088ad2dced9bb1c5d51f7459d45d6936c5a88c9a6af78e6cc8d0124e6df
MD5 b0d4d7e2b93204bbb4c926a61162fff3
BLAKE2b-256 5cae2ebc151265b6718ed4c99d0dbbb5912f670c9d8146e3c0ceabad87ec433a

See more details on using hashes here.

File details

Details for the file MyGaiaDB-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for MyGaiaDB-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 150aa3fe426439ee68a1116b23699ed2968ee3f677866c8e6c81d5d89b3b7dec
MD5 53a58fe7da1b92ff5ed6919fefd31bb6
BLAKE2b-256 4467d5d6ea3021a31fb1a8b0fff0a446cbb13bf387307203a4eaa9e91548d3fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page