Skip to main content

This library uses nbeats-pytorch as base and accomplishes univariate time series forecasting using N-BEATS.

Project description

NBEATS

N-BEATS: Neural basis expansion analysis for interpretable time series forecasting

NBEATS is a pytorch based library for deep learning based time series forecasting (https://arxiv.org/pdf/1905.10437v3.pdf) and utilises nbeats-pytorch.

Dependencies: Python >=3.6

Installation

$ pip install NBEATS

Import

from NBEATS import NeuralBeats

Mandatory Parameters:

  • data
  • forecast_length

Basic model with only mandatory parameters can be used to get forecasted values as shown below:

import pandas as pd
from NBEATS import NeuralBeats

data = pd.read_csv('test.csv')   
data = data.values        # (nx1 array)

model = NeuralBeats(data=data, forecast_length=5)
model.fit()
forecast = model.predict()

Optional parameters to the model object

Parameter Default Value
backcast_length 3* forecast_length
path ' ' (path to save intermediate training checkpoint)
checkpoint_name 'NBEATS-checkpoint.th'
mode 'cpu'
batch_size len(data)/10
thetas_dims [4, 8]
nb_blocks_per_stack 3
share_weights_in_stack False
train_percent 0.8
save_model False
hidden_layer_units 128
stack [1,1] (As per the paper- Mapping is as follows -- 1: GENERIC_BLOCK, 2: TREND_BLOCK , 3: SEASONALITY_BLOCK)

Functions

fit()

This is used for training the model. The default value of parameters passed are epoch=25, optimiser=Adam, plot=True, verbose=True

ex:

model.fit(epoch=25,optimiser=torch.optim.AdamW(model.parameters, lr=0.001, betas=(0.9, 0.999), eps=1e-07, weight_decay=0.01, amsgrad=False),plot=False, verbose=True)
predict_data ()

The argument to the method could be empty or a numpy array of length backcast_length x 1 which means if no argument is passed and training data is till month m then prediction will be for month m+1,m+2 and m+3 when forecast_length=3.If forecast is needed for month m+3 onwards then numpy array of backcast_length (3 x forecast_length -This is by default) i.e 9(3 x 3) previous months (m-6 to m+2) needs to be provided to predict for month m+3,m+4 and m+5.

Important Note : Backcast length can be provided as a model argument along with forecast_length eg: backcast_length=6,backcast_length=9,backcast_length=12......till backcast_length=21 for forecast_length=3 ,as the paper suggests values between 2 x forecast_length to 7 x forecast_length .The default is 3 x forecast_length .

Returns forecasted values.

save(file) & load(file,optimizer):

Save and load the model after training respectively.

Example: model.save('NBEATS.th') or model.load('NBEATS.th')

DEMO

1: GENERIC_BLOCK and 3: SEASONALITY_BLOCK stacks are used below (stack=[1,3]).Go through the paper for more details.Playing around with the 3 blocks(GENERIC,SEASONALITY and TREND) might improve accuracy.

import pandas as pd
from NBEATS import NeuralBeats
from torch import optim

data = pd.read_csv('test.csv')   
data = data.values # nx1(numpy array)

model=NeuralBeats(data=data,forecast_length=5,stack=[1,3],nb_blocks_per_stack=3,thetas_dims=[3,7])

#or use prebuilt models
#model.load(file='NBEATS.th')


#use customised optimiser with parameters
model.fit(epoch=35,optimiser=optim.AdamW(model.parameters, lr=0.001, betas=(0.9, 0.999), eps=1e-07, weight_decay=0.01, amsgrad=False)) 
#or 
#model.fit()

forecast=model.predict()
#or
#model.predict(predict_data=pred_data) where pred_data is numpy array of size backcast_length*1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

NBEATS-1.3.9.tar.gz (5.4 kB view details)

Uploaded Source

Built Distribution

NBEATS-1.3.9-py3-none-any.whl (6.4 kB view details)

Uploaded Python 3

File details

Details for the file NBEATS-1.3.9.tar.gz.

File metadata

  • Download URL: NBEATS-1.3.9.tar.gz
  • Upload date:
  • Size: 5.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/46.1.1 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for NBEATS-1.3.9.tar.gz
Algorithm Hash digest
SHA256 1ccf0a244138086d81aa2b916ac3982c1d9da378ec325625bc95f4401c0c4fcc
MD5 2c62340b3a6f34c77832f555b0610d23
BLAKE2b-256 130ec69ae280c25112b9d280bf3a74c0c3bc68db249f3a5de2962c19271afd33

See more details on using hashes here.

File details

Details for the file NBEATS-1.3.9-py3-none-any.whl.

File metadata

  • Download URL: NBEATS-1.3.9-py3-none-any.whl
  • Upload date:
  • Size: 6.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/46.1.1 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for NBEATS-1.3.9-py3-none-any.whl
Algorithm Hash digest
SHA256 bd9805816ac6fa52968c8ce019c44e67a2a8ea8dd16a7dbd704f66e5ce71fdb5
MD5 f541c26aa7a5745e6ef4cc6e1ab4b8fe
BLAKE2b-256 a7816d6ed42aa678fe7014b7e9bf9f1eee52af216b7d06152aaf53589284367f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page