Skip to main content

Automates data-driven machine learning for materials science via NJmatML (材料数据可视化、机器学习建模与预测)

Project description

User Mannual(说明书参见): https://nbviewer.org/github/Zhang-NJ-Lab/NJmatML/blob/main/2022-11-21/NJmatML-2022-11-21.ipynb

csv模板请参见:https://github.com/Zhang-NJ-Lab/NJmatML/tree/main/2022-11-17

起始训练测试数据集csv(最右一列需要为输出数据,每列需要有列名):https://github.com/Zhang-NJ-Lab/NJmatML/blob/main/2022-11-17/2DEformationCleaned.csv
待预测csv:https://github.com/Zhang-NJ-Lab/NJmatML/blob/main/2022-11-17/x_New.csv
特征生成中的无机材料化学式csv:https://github.com/Zhang-NJ-Lab/NJmatML/blob/main/2022-11-17/Inorganic_formula.csv
特征生成中的有机材料化学式csv:Featurize_formula_exps.csv

模块:数据读取,可视化,热图,特征选择,特征生成,重要性排名,机器学习建模,准确率计算,交叉验证,符号回归等等。封装了简便函数用于机器学习建模。

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

NJmatML-0.0.11-py3-none-any.whl (12.1 kB view details)

Uploaded Python 3

File details

Details for the file NJmatML-0.0.11-py3-none-any.whl.

File metadata

  • Download URL: NJmatML-0.0.11-py3-none-any.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.8

File hashes

Hashes for NJmatML-0.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 f85c2dba2eda46d7806657318db38dd7e6f7d64d238fd6ac2bd0937330b31d5e
MD5 1dd8db5146749ca403f99780144e5a4c
BLAKE2b-256 95015a4153cfc72969c0dae520d71cb8bcddd952b6acaec4c15ff419c9f91a9d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page