Skip to main content

A tool set for NLP.

Project description

Usage Sample ''''''''''''

.. code:: python

    import torch
    from sklearn.model_selection import train_test_split
    from nlpx.text_token import Tokenizer
    from nlpx.model.classifier import TextCNNClassifier
    from nlpx.model.wrapper import ClassModelWrapper
    from nlpx.dataset import TokenDataset, PaddingTokenCollator

    if __name__ == '__main__':
        classes = ['class1', 'class2', 'class3'...]
        texts = [[str],]
        labels = [0, 0, 1, 2, 1...]
        tokenizer = Tokenizer.from_texts(texts, min_freq=5)
        sent = 'I love you'
        tokens = tokenizer.encode(sent, max_length=6)
        # [101, 66, 88, 99, 102, 0]
        sent = tokenizer.decode(tokens)
        # ['<BOS>', 'I', 'love', 'you', '<EOS>', '<PAD>']

        tokens = tokenizer.batch_encode(texts, padding=False)
        X_train, X_test, y_train, y_test = train_test_split(tokens, labels, test_size=0.2)
        train_set = TokenDataset(X_train, y_train)
        val_set = TokenDataset(X_test, y_test)

        model = TextCNNClassifier(embed_dim=128, vocab_size=tokenizer.vocab_size, num_classes=len(classes))
        model_wrapper = ClassModelWrapper(model, classes=classes)
        model_wrapper.train(train_set, val_set, show_progress=True, collate_fn=PaddingTokenCollator(tokenizer.pad))

        result = model_wrapper.evaluate(val_set, collate_fn=PaddingTokenCollator(tokenizer.pad))
        # 0.953125

        test_inputs = torch.tensor(test_tokens, dtype=torch.long)
        result = model_wrapper.predict(test_inputs)
        # [0, 1]

        result = model_wrapper.predict_classes(test_inputs)
        # ['class1', 'class2']

        result = model_wrapper.predict_proba(test_inputs)
        # ([0, 1], array([0.99439645, 0.99190724], dtype=float32))

        result = model_wrapper.predict_classes_proba(test_inputs)
        # (['class1', 'class2'], array([0.99439645, 0.99190724], dtype=float32))

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

NLPX-1.6.3.tar.gz (34.7 kB view details)

Uploaded Source

File details

Details for the file NLPX-1.6.3.tar.gz.

File metadata

  • Download URL: NLPX-1.6.3.tar.gz
  • Upload date:
  • Size: 34.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for NLPX-1.6.3.tar.gz
Algorithm Hash digest
SHA256 941fc72b00fad57b63ba6cf464cdd11b8842597bd33bfff441250c169a183dc0
MD5 641219afc47c9f6bda073b1e3e8c26c7
BLAKE2b-256 79969684c722b9959fc32751f454478bda22a2baac11366e132082b9b13cb9a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page