A tool set for NLP.
Project description
Usage Sample ''''''''''''
.. code:: python
import torch
from sklearn.model_selection import train_test_split
from nlpx.text_token import Tokenizer
from nlpx.model.classifier import TextCNNClassifier
from nlpx.model.wrapper import ClassModelWrapper
from nlpx.dataset import TokenDataset, PaddingTokenCollator
if __name__ == '__main__':
classes = ['class1', 'class2', 'class3'...]
texts = [[str],]
labels = [0, 0, 1, 2, 1...]
tokenizer = Tokenizer.from_texts(texts, min_freq=5)
sent = 'I love you'
tokens = tokenizer.encode(sent, max_length=6)
# [101, 66, 88, 99, 102, 0]
sent = tokenizer.decode(tokens)
# ['<BOS>', 'I', 'love', 'you', '<EOS>', '<PAD>']
tokens = tokenizer.batch_encode(texts, padding=False)
X_train, X_test, y_train, y_test = train_test_split(tokens, labels, test_size=0.2)
train_set = TokenDataset(X_train, y_train)
val_set = TokenDataset(X_test, y_test)
model = TextCNNClassifier(embed_dim=128, vocab_size=tokenizer.vocab_size, num_classes=len(classes))
model_wrapper = ClassModelWrapper(model, classes=classes)
model_wrapper.train(train_set, val_set, show_progress=True, collate_fn=PaddingTokenCollator(tokenizer.pad))
result = model_wrapper.evaluate(val_set, collate_fn=PaddingTokenCollator(tokenizer.pad))
# 0.953125
test_inputs = torch.tensor(test_tokens, dtype=torch.long)
result = model_wrapper.predict(test_inputs)
# [0, 1]
result = model_wrapper.predict_classes(test_inputs)
# ['class1', 'class2']
result = model_wrapper.predict_proba(test_inputs)
# ([0, 1], array([0.99439645, 0.99190724], dtype=float32))
result = model_wrapper.predict_classes_proba(test_inputs)
# (['class1', 'class2'], array([0.99439645, 0.99190724], dtype=float32))
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
NLPX-1.6.3.tar.gz
(34.7 kB
view details)
File details
Details for the file NLPX-1.6.3.tar.gz
.
File metadata
- Download URL: NLPX-1.6.3.tar.gz
- Upload date:
- Size: 34.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 941fc72b00fad57b63ba6cf464cdd11b8842597bd33bfff441250c169a183dc0 |
|
MD5 | 641219afc47c9f6bda073b1e3e8c26c7 |
|
BLAKE2b-256 | 79969684c722b9959fc32751f454478bda22a2baac11366e132082b9b13cb9a7 |