Skip to main content

A tool set for NLP.

Project description

Usage Sample ''''''''''''

.. code:: python

    import torch
    from sklearn.model_selection import train_test_split
    from nlpx.text_token import Tokenizer
    from nlpx.model.classifier import TextCNNClassifier
    from nlpx.model.wrapper import ClassModelWrapper
    from nlpx.dataset import TokenDataset, PaddingTokenCollator

    if __name__ == '__main__':
        classes = ['class1', 'class2', 'class3'...]
        texts = [[str],]
        labels = [0, 0, 1, 2, 1...]
        tokenizer = Tokenizer.from_texts(texts, min_freq=5)
        sent = 'I love you'
        tokens = tokenizer.encode(sent, max_length=6)
        # [101, 66, 88, 99, 102, 0]
        sent = tokenizer.decode(tokens)
        # ['<BOS>', 'I', 'love', 'you', '<EOS>', '<PAD>']

        tokens = tokenizer.batch_encode(texts, padding=False)
        X_train, X_test, y_train, y_test = train_test_split(tokens, labels, test_size=0.2)
        train_set = TokenDataset(X_train, y_train)
        val_set = TokenDataset(X_test, y_test)

        model = TextCNNClassifier(embed_dim=128, vocab_size=tokenizer.vocab_size, num_classes=len(classes))
        model_wrapper = ClassModelWrapper(model, classes=classes)
        model_wrapper.train(train_set, val_set, show_progress=True, collate_fn=PaddingTokenCollator(tokenizer.pad))

        result = model_wrapper.evaluate(val_set, collate_fn=PaddingTokenCollator(tokenizer.pad))
        # 0.953125

        test_inputs = torch.tensor(test_tokens, dtype=torch.long)
        result = model_wrapper.predict(test_inputs)
        # [0, 1]

        result = model_wrapper.predict_classes(test_inputs)
        # ['class1', 'class2']

        result = model_wrapper.predict_proba(test_inputs)
        # ([0, 1], array([0.99439645, 0.99190724], dtype=float32))

        result = model_wrapper.predict_classes_proba(test_inputs)
        # (['class1', 'class2'], array([0.99439645, 0.99190724], dtype=float32))

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

NLPX-1.6.8.tar.gz (39.2 kB view details)

Uploaded Source

File details

Details for the file NLPX-1.6.8.tar.gz.

File metadata

  • Download URL: NLPX-1.6.8.tar.gz
  • Upload date:
  • Size: 39.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for NLPX-1.6.8.tar.gz
Algorithm Hash digest
SHA256 4096cf1f0e03860aed60342d69e5e697da5ba4ea2366845e3bda260497129317
MD5 d7e9869e05b9dda8977c2bf29fc73f8c
BLAKE2b-256 f9bb4be2a65f416cbb722d16c89c1be02ba815fbad0e68398f92487211344b47

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page