Skip to main content

Python NLP for Portuguese

Project description

NLPyPort

The NLPy_Port is a pipeline assembled from the NLTK pipeline, adding and changing its elements for better processing the portuguese that were previouslly created for the NLPPort pipeline. It suports at the moment the taks of Tokenization, PoS Tagging , Lemmatization and Named Entity Recognition

Instalation

Installing NLPyPort should be as simple as installing the requirements or installing the module via pip (pip install NLPyPort). However, some other configurations may be necessary.

If your NLTK version is above 3.4.5, install the version 3.4.5 by running:

>>> pip install nltk==3.4.5

If you installed NLTK and do not have downloaded the "Floresta" corpus, run the following commands:

>>> import nltk
>>> nltk.download('floresta')

Usage

In order to simplify the usage of the NLPyPort pipeline, some structural changes were made. The “exemplo.py” file shows exemples os several use cases.

How to use the pipeline

Depending on the planed usage, the pipeline may be called in three different ways:

1 - Default

text = new_full_pipe( your_input_file )

2 - Optional arguments

text = new_full_pipe( your_input_file , options = options )

3 - Optional arguments and pre-load pipeline

config_list = load_congif_to_list()         # Pre-load the pipeline
text=new_full_pipe( your_input_file , options = options , config_list = config_list)

Available options

"tokenizer" : True -> Perform Tokenization

"pos_tagger" : True -> Perform Pos Tagging

"lemmatizer" : True -> Perform Lemmatization

"entity_recognition" : True -> Perform NER

"np_chunking" : True -> Perform NP Chunking

"pre_load" : False -> Preload the pipeline, needs the additional argument “config_list”

"string_or_array" : True -> Set input as being an array or a string

Returned text

In case of success, the pipeline will return an object of the “Text” class. The properties of this are as follow: text.tokens text.pos_tags text.lemas text.entities text.np_tags

Additionally, there is a method to return the pipeline in the CoNNL Format: text.print_conll()

To separate lines , at the end of each line the additional token EOS is added.

Credits

Tokenizer and Lemmatizer resource files - Rodrigues, Ricardo, Hugo Gonçalo Oliveira, and Paulo Gomes. "NLPPort: A Pipeline for Portuguese NLP (Short Paper)." 7th Symposium on Languages, Applications and Technologies (SLATE 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

Lemmatizer design - Rodrigues, Ricardo, Hugo Gonçalo Oliveira, and Paulo Gomes. "LemPORT: a high-accuracy cross-platform lemmatizer for portuguese." 3rd Symposium on Languages, Applications and Technologies. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

PoS trainer (adapted from) - https://github.com/fmaruki/Nltk-Tagger-Portuguese

Named Entity Recognition
CRF suite - Naoaki Okazaki http://www.chokkan.org/software/crfsuite/ sklearn-crfsuite wrapper - https://github.com/TeamHG-Memex/sklearn-crfsuite

Corpus Corpus for PoS tagging training MacMorpho - http://nilc.icmc.usp.br/macmorpho/ Floresta Sintá(c)tica - https://www.linguateca.pt/Floresta/corpus.html

Citations

To cite and give credits to the pipeline please use the following BibText reference:

@inproceedings{ferreira_etal:slate2019, Author = {João Ferreira and Hugo {Gonçalo~Oliveira} and Ricardo Rodrigues}, Booktitle = {Symposium on Languages, Applications and Technologies (SLATE 2019)}, Month = {June}, Note = {In press}, Title = {Improving {NLTK} for Processing {P}ortuguese}, Year = {2019}}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

NLPyPort-2.2.5.tar.gz (42.7 MB view details)

Uploaded Source

File details

Details for the file NLPyPort-2.2.5.tar.gz.

File metadata

  • Download URL: NLPyPort-2.2.5.tar.gz
  • Upload date:
  • Size: 42.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.26.0 CPython/3.5.1

File hashes

Hashes for NLPyPort-2.2.5.tar.gz
Algorithm Hash digest
SHA256 355fadb8b5cd969733f0c2bebfb59f5dbab4eddf22324cc767f5ef2e9b7955f7
MD5 4ef478250f6908b5a0b422cc9b5db26c
BLAKE2b-256 b7cb27c653a479f649313c3d6da4dd88bbf6e92ed9f71f6cf64aa8cc177426c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page